
Coarray Tensor Completion
for DOA Estimation

Hang Zheng, Student Member, IEEE
Zhejiang University, Hangzhou, China

Zhiguo Shi, Senior Member, IEEE
Zhejiang University, Hangzhou, China

Chengwei Zhou, Member, IEEE
Zhejiang University, Hangzhou, China

André L. F. de Almeida, Senior Member, IEEE
Federal University of Ceará, Fortaleza, Brazil

Abstract— Sparse array direction-of-arrival (DOA) estimation
using tensor model has been developed to handle multi-dimensional
sub-Nyquist sampled signals. Furthermore, augmented virtual ar-
rays can be derived for Nyquist-matched coarray tensor processing.
However, the partially augmentable sparse array corresponds to
a discontinuous virtual array, whereas the existing methods can
only utilize its continuous part. Conventional virtual linear array
interpolation techniques complete coarray covariance matrices with
dispersed missing elements, but fail to complete the coarray tensor
with whole missing slices. In this paper, we propose a coarray
tensor completion algorithm for two-dimensional DOA estimation,
where the coarray tensor statistics can be entirely exploited. In
particular, in order to impose an effective low-rank regularization
on the slice-missing coarray tensor, we propose shift dimensional
augmenting and coarray tensor reshaping approaches to reformu-
late a structured coarray tensor with sufficiently dispersed missing
elements. Furthermore, the shape of the reformulated coarray
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tensor is optimized by maximizing the dispersion-to-percentage
ratio of missing elements. As such, a coarray tensor nuclear norm
minimization problem can be designed to optimize the completed
coarray tensor corresponding to a filled virtual array, based on
which the closed-form DOA estimation is achieved. Meanwhile, the
global convergence of the coarray tensor completion is theoretically
proved. Simulation results demonstrate the effectiveness of the
proposed algorithm compared to other matrix-based and tensor-
based methods.

Index Terms— Coarray tensor, direction-of-arrival estimation,
sparse array, tensor completion.

I. Introduction

D IRECTION-OF-ARRIVAL (DOA) estimation using
sensor arrays has been intensively studied in the

field of radar, sonar, speech, wireless communications,
and so on [2–6]. Different from uniform arrays, sparse
arrays including coprime arrays [7], nested arrays [8, 9],
and others with optimized configurations [10] estimate
DOAs of signals at sub-Nyquist sampling rate, which
helps to alleviate antenna coupling and system overload
[11]. In general, augmented virtual arrays can be derived
from the second-order signal statistics of sparse arrays
for Nyquist-matched coarray processing [12–14]. The
common coarray-based DOA estimation methods include
coarray Multiple Signal Classification (MUSIC) [15, 16],
coarray Estimation of Signal Parameters via Rotational
Invariance Technique (ESPRIT) [17], and coarray sparsity
methods [18, 19], etc. They all follow the same principle
of matrix-based signal processing, i.e., representing the
received signals as a matrix, then flattening its second-
order coarray statistics into a vector. However, with the
increasing sparse array dimension, these methods fail to
preserve the structure of multi-dimensional sub-Nyquist
signals.

As an extension of matrix in the high-dimensional
space, tensor has been utilized for multi-dimensional ar-
ray processing, among which tensor decompositions [20]
can estimate underlying multiway parameters in wireless
communication and radar systems [21]. In particular, the
Vandermonde structure constrained tensor decomposition
method [22] and the Hermitian Toeplitz constrained tensor
reconstruction method [23] have been respectively pro-
posed to achieve two-dimensional (2-D) DOA estimation
for transmit beamspace multiple-input multiple-output
radar and coherent sources DOA estimation for uniform
rectangular array. By incorporating tensor model with
sub-Nyquist sampling, a tensor-based sub-Nyquist radar
equipped with a thinned array was proposed for DOA
estimation [24], where the first-order sub-Nyquist tensor
signals were recovered via tensorial compressed sens-
ing. More recently, augmented multi-dimensional virtual
arrays were derived for coarray tensor DOA estimation
[25, 26], which pushed the sub-Nyquist tensor model to
the coarray domain. However, for partially augmentable
sparse arrays such as the representative coprime array,
the corresponding multi-dimensional discontinuous vir-
tual arrays have slices of holes [27], resulting whole slices
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of missing elements in the coarray tensor. The existing
coarray tensor DOA estimation methods for partially
augmentable sparse arrays have to discard discontinuous
virtual sensors to extract a virtual uniform array. As such,
they cannot utilize the entire coarray tensor statistics, and
the resulting aperture reduction and resolution degradation
cannot be compensated by tensor processing. Thus, we
aim to make full use of the derived virtual array to
enhance the estimation performance.

To fully utilize the entire coarray information, vir-
tual array interpolation techniques have been proposed
for DOA estimation with coprime linear arrays, among
which matrix completion and matrix reconstruction are
two mainstream solutions [28, 29]. In particular, matrix
completion has been adopted to recover randomly missing
elements in corrupted data matrix by imposing a low-
rank regularization, which is normally relaxed to nuclear
norm minimization. In order to complete the incomplete
coarray covariance matrix corresponding to a discontin-
uous virtual linear array, a nuclear norm minimization
optimization approach was proposed to yield an inter-
polated virtual linear array [28]. On the other hand, in
order for gridless DOA estimation, the complete coarray
covariance matrix corresponding to an interpolated virtual
linear array was reconstructed via atomic norm minimiza-
tion [29], where the Toeplitz property was utilized as a
prior. Nevertheless, these virtual linear array interpolation
techniques are only suitable for incomplete matrices with
dispersed missing elements, but not for completing the
coarray tensor with whole missing slices.

Due to the fact that adjacent missing elements in
an incomplete tensor present a strong relevance, a low-
rank regularization-based tensor completion technique
was proposed to complete the randomly missing elements
[30]. Since image data is normally corrupted by randomly
missing pixels, the low-rank tensor completion technique
has been applied to repair images [31]. However, the
whole missing slices prevent a sufficient low-rank reg-
ularization on the coarray tensor. To recover regularly
damaged images with slices of missing pixels, embedding
space-based slice completion methods have gained many
interests, where the Tucker or tensor train representation
of the incomplete image tensor is approximated through
an iterative rank increment procedure [32, 33]. Neverthe-
less, neither the Tucker rank nor the tensor train rank
increment operation matches the canonical polyadic (CP)
model of the coarray tensor, which means that the existing
slice completion methods for image restoration are not ap-
plicable to coarray tensor completion. More recently, a CP
approximation-based tensor completion method has been
proposed to reconstruct the functional magnetic resonance
imaging (fMRI) data with regular sub-Nyquist sampling
patterns including both missing fibers and missing slices
[34]. However, the fMRI tensor reconstruction modifies
observed elements in the incomplete tensor, whereas the
observed elements in the coarray tensor are expected to
be preserved for DOA estimation. Thus, it remains chal-
lenging to effectively complete the slice-missing coarray

tensor for DOA estimation. To the best of our knowledge,
it has not been addressed in the literature.

In this paper, we propose a 2-D sparse array DOA
estimation algorithm based on coarray tensor completion.
First, an incomplete coarray tensor corresponding to an
augmented discontinuous virtual cubic array is derived
from the sub-Nyquist tensor statistics. Due to the ex-
istence of whole missing slices in the coarray tensor,
the conventional low-rank tensor completion techniques
become ineffective. To address this issue, we reformu-
late the initial coarray tensor as a structured one with
dispersed missing elements through shift dimensional
augmenting and coarray tensor reshaping. Moreover, the
shape of the reformulated coarray tensor is optimized by
simultaneously maximizing the dispersion level of miss-
ing elements and minimizing the percentage of missing
elements. As such, the reformulated coarray tensor can
be successfully completed by solving a coarray tensor
nuclear norm minimization problem via an alternating
direction method of multipliers (ADMM). Meanwhile,
we prove the global convergence of using the ADMM
for coarray tensor completion. Finally, the completed
coarray tensor corresponding to a filled virtual cubic
array is decomposed to obtain the closed-form solution of
azimuth and elevation angles. According to our numerical
simulation results, the proposed coarray tensor completion
algorithm is superior to conventional matrix-based and
tensor-based methods in terms of estimation accuracy
and angular resolution, and can simultaneously deal with
uncorrelated and fully correlated signals.

In our previous work on sparse array DOA estimation
[27], the continuous part of the multi-dimensional dis-
continuous virtual array was extracted for coarray tensor
processing, whereas the problem of completing slice-
missing coarray tensor has not been investigated. In this
paper, however, we focus on the utilization of the entire
coarray tensor statistics to further enhance the estimation
performance. Regarding the problem of coherent sources
DOA estimation in multi-path environments, we devel-
oped a tensor decorrelation method for uniform arrays
[23], which does not consider the sub-Nyquist sampling
scenario. In contrast, the effectiveness of coarray tensor
processing for coherent sources estimation with sparse
arrays is validated in this paper. Preliminary results of
this work were presented in our conference paper [1]. In
this paper, we will further investigate the optimal structure
of the reformulated coarray tensor by designing a coarray
sub-tensor size optimization problem, and present detailed
derivations for the coarray tensor completion problem.
Moreover, we will also provide theoretical analyses on
the dispersion level of missing elements in the reformu-
lated coarray tensor, global convergence of coarray tensor
completion, and computational complexity.

The rest of the paper is organized as follows. In Sec-
tion II, we present a tensor signal model for sparse array.
In Section III, we reformulate the incomplete coarray ten-
sor to distribute its missing elements, and in Section IV,
we propose a coarray tensor completion method for DOA
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estimation. We discuss the simulation results in Section
V and make our conclusions in Section VI.

Notations of this paper are listed in TABLE I.

TABLE I
LIST OF NOTATION

Symbol Description
a,a,A,A Scalar, vector, matrix, and tensor

 Imaginary unit

C, N Complex number and natural num-
ber sets

(·)T, (·)H, (·)∗, (·)† Transpose, Hermitian transpose,
conjugation, and pseudoinverse

[ · ](j) Mode-j tensor unfolding
o(·) Order of a tensor
×j Mode-j tensor-matrix product

A1

j2
×
j1
A2

Tensor contraction along the j1-th
dimension of A1 and the j2-th di-
mension of A2

[ · ]tj Concatenation in the j-th dimension
< ·, · > Inner product between two tensors

E{·} Statistical expectation

PΩ(A)
Projection of the elements in A onto
the index set Ω

◦, ⊗, �, ~
Outer product, Kronecker product,
Khatri-Rao product, and Hadamard
product

‖·‖F, ‖·‖2, ‖·‖∗
Frobenius norm, Euclidean norm,
and nuclear norm

mod(a, b) Modulo between a and b
b·c Rounding down
| · | Cardinality of a set or absolute value
∠ Phase of a complex number

I , I Identity matrix and identity tensor
0, O Zero matrix and zero tensor

II. Tensor Signal Model for Coprime Planar Array

In this paper, we adopt the coprime planar array,
a typical partially augmentable sparse array, for DOA
estimation. As shown in Fig. 1, the coprime planar array
consists of two sparse uniform rectangular arrays (URAs)
{Pi, i = 1, 2}, where the sparse URA Pi contains MPi
sensors along the x-axis and NPi sensors along the y-
axis, respectively. Specifically, we have MP1

= 2M1,
NP1

= 2N1, and MP2
= M2, NP2

= N2, where
M1 and M2 are coprime integers, as well as the pair
of N1 and N2. For sparse URA P1, its inter-element
spacings along the x-axis and the y-axis are respectively
dx1 = M2d and dy1 = N2d, where d = λ/2 with λ
being the signal wavelength. Similarly, the inter-element
spacings along the x-axis and the y-axis for sparse URA
P2 are dx2 =M1d and dy2 =N1d, respectively. As such,
the sensors of the coprime planar array are located at

The sparse URA

The sparse URA

Fig. 1. The geometry of the coprime planar array.

{
(xP1

, yP1
)∪ (xP2

, yP2
)
∣∣xP1

= dx1
m1, yP1

= dy1n1, xP2
=

dx2
m2, yP2

= dy2n2

}
, where m1 ∈ {0, 1, · · · ,MP1

− 1},
n1 ∈ {0, 1, · · · , NP1

− 1}, m2 ∈ {0, 1, · · · ,MP2
− 1}, and

n2∈{0, 1, · · · , NP2
− 1}. Note that, sparse URAs P1 and

P2 only overlap at the origin (0, 0) due to their coprime
deployment. Hence, there are total MP1

NP1
+MP2

NP2
−1

sensors in the deployed coprime planar array.
Assume that K uncorrelated far-field narrowband

source signals impinge on the coprime planar array from
directions {(θk, φk), k = 1, 2, · · · ,K}, where θk ∈ [0, π]
and φk ∈ [−π/2, π/2] are the azimuth and elevation of the
k-th source, respectively. Under deployment of the planar
array for 2-D DOA estimation, the array received signals
are naturally embedded with the 2-D spatial information
of the sources. However, the conventional signal model
in a form of matrix only reflects the spatial information
along a single dimension, causing the damage of structural
signal characteristics. To overcome this issue, we model
each snapshot as an individual slice, and concatenate all
snapshots in a temporal dimension. As such, the received
signals at the sparse URA Pi can be represented as a
three-dimensional (3-D) tensor

X i=

K∑
k=1

ai(µk) ◦ ai(νk) ◦ sk+N i∈CMPi×NPi×T , (1)

where T denotes the number of snapshots,

ai(µk)=
[
1, e−

2π
λ dxiµk , · · · , e− 2πλ (MPi−1)dxiµk

]T∈CMPi ,

ai(νk)=
[
1, e−

2π
λ dyiνk , · · · , e− 2πλ (NPi−1)dyiνk

]T∈CNPi

(2)

are respectively the steering vectors along the x-axis
and the y-axis with µk=sinφk cos θk, νk=sinφk sin θk,
sk = [sk(1), sk(2), · · · , sk(T )]T ∈ CT is the signal
waveform vector of the k-th source, and N i is an
independent and identically distributed (i.i.d.) additive
Gaussian white noise tensor, i.e., N i(:,:,t) ∼CN (0, σ2

nI),
∀t ∈ {1, 2, · · · , T}. Here, N i(:,:,t) denotes the t-th slice
of N i, and σ2

n denotes the noise power. Note that, the
signal component in (1) follows the canonical polyadic
decomposition (CPD) representation.

To obtain the second-order signal statistics of the
coprime planar array, we calculate a four-dimensional
(4-D) cross-correlation tensor R ∈ CMP1×NP1×MP2×NP2
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HolesVirtual sensors Completed virtual sensors

(a)

(b) (c)(a)

Fig. 2. The virtual array geometries of the coprime planar array. (a) The augmented virtual planar array V and its
continuous segment U. (b) The discontinuous virtual cubic array W. (c) The filled virtual cubic array W̄.

between X 1 and X 2 as
R = E

{
X 1(:,:,t)

◦X ∗2(:,:,t)

}
=

K∑
k=1

σ2
sk
a1(µk) ◦ a1(νk) ◦ a∗2(µk) ◦ a∗2(νk) + N ,

(3)

where σ2
sk

= E {sk(t)s∗k(t)} represents the power of the
k-th source, and N = E

{
N 1(:,:,t)

◦N ∗2(:,:,t)

}
is a 4-D

zero tensor except the (1, 1, 1, 1)-th element being σ2
n. In

practices, the cross-correlation tensor R can be estimated
as

R̂ =
1

T
X 1

3
×
3
X ∗2, (4)

which averages the tensor contraction between X 1 and
X 2 along the temporal dimension.

III. Coarray Tensor Reformulation

In this section, we derive an incomplete coarray tensor
from the cross-correlation tensor of the coprime planar
array. To ensure an effective low-rank regularization on
the slice-missing coarray tensor, we reformulate it as a
structured one through shift dimensional augmenting and
coarray tensor reshaping. Meanwhile, we also investigate
the optimal shape of the reformulated coarray tensor.

A. Slice-missing coarray tensor derivation

In order to derive an augmented virtual array for
DOA estimation, we merge the dimensions of the cross-
correlation tensor R that represent the angular informa-
tion along the same coordinate axes to generate difference
coarrays. More specifically, considering that the dimen-
sion pairs {1, 3} and {2, 4} of R respectively represent
the angular information along the x-axis and the y-axis, R
can be partially unfolded into a cross-correlation matrix
R ,R{1,3}{2,4}∈CMP1MP2×NP1NP2 as

R=

K∑
k=1

σ2
sk

[
a∗2(µk)⊗a1(µk)

]
◦
[
a∗2(νk)⊗a1(νk)

]
+Z, (5)

where Kronecker products a∗2(µk)⊗a1(µk) and a∗2(νk)⊗
a1(νk) respectively derive difference coarrays along the

x-axis and the y-axis, and Z , N {1,3}{2,4} is a noise
matrix with the (1, 1)-th element being σ2

n while all others
being 0.

As shown in Fig. 2(a), the difference coarrays gen-
erated in (5) correspond to an augmented discontinuous
virtual planar array

V=
{
(xV, yV)|xV =dx1

m1−dx2
m2, yV =dy1n1−dy2n2

}
(6)

of size Jx×Jy, where

Jx = 3M1M2 −M1 −M2 + 1,

Jy = 3N1N2 −N1 −N2 + 1.
(7)

As such, the partially unfolding of R in (5) enables the
subsequent coarray tensor formulation. Denoting b(µk) ∈
CJx and b(νk) ∈ CJy respectively as the steering vec-
tors of V along the x-axis and the y-axis, they can be
represented as

b(µk)=
[
e−π(−M1M2+M1)µk, e−π(−M1M2+M1+1)µk,

· · · , e−π(2M1M2−M2)µk
]T
~ ex,

(8)

and
b(νk)=

[
e−π(−N1N2+N1)νk , e−π(−N1N2+N1+1)νk ,

· · · , e−π(2N1N2−N2)νk
]T
~ ey.

(9)

Here, ex is an all-one vector except the jx-th element
being 0 if jx corresponds to the position of holes in V
along the x-axis, and ey is an all-one vector except the
jy-th element being 0 if jy corresponds to the position of
holes in V along the y-axis. As shown in Fig. 2(a), the
virtual planar array V contains a virtual URA

U={(xU, yU)|xU =[−M2+1,M1M2+M1−1]d,

yU =[−N2+1, N1N2+N1−1]d},
(10)

which was usually extracted for the Nyquist-matched
coarray processing. This, however, causes an inevitable
loss on statistical information. To avoid the information
loss, we will make full use of all available virtual sensors
in V to achieve coarray tensor DOA estimation.

Since the cross-correlation statistics do not have the
Hermitian property, the derived virtual planar array V is
geometrically non-symmetric to the coordinate axes. To
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(a) (b)

Observed elements

Segmentation

  x-axisy
-a

x
is Mirror information

Angular information

Fig. 3. Illustration of the proposed incomplete coarray tensor segmentation procedure. (a) The 3-D slice-missing
coarray tensor U . (b) The segmented coarray sub-tensors Uux,uy .

maximize the attainable virtual array aperture, we extend
the mirror part of V on the XOY plane, i.e., Ṽ, then
pile up V and Ṽ to form a discontinuous virtual cubic
array W, as shown in Fig. 2(b). By sorting elements
in the cross-correlation matrix R to match the locations
of virtual sensors in the virtual planar array V, the
equivalent second-order signal of V can be obtained as
U ∈ CJx×Jy . Analogously, the equivalent second-order
signal of the mirror virtual planar array Ṽ, denoted by
Ũ ∈ CJx×Jy , can be obtained by sorting elements in R∗.
Notably, the range of DOA estimation is determined by
the deployment of the physical sensor array, and will not
be affected by the virtual array configuration. Meanwhile,
the derived virtual planar array V and its mirror part Ṽ
are simultaneously utilized to expand the virtual array
aperture, which does not influence the distinguishable
range of DOA estimation.

Then, we concatenate U and Ũ along the third
dimension to derive the equivalent second order signal of
the virtual cubic array W, i.e., a 3-D incomplete coarray
tensor

U =

K∑
k=1

σ2
sk
b(µk) ◦ b(νk) ◦ hk + Z ∈ CJx×Jy×2. (11)

Here,

hk=
[
1, e−π(−(M1M2+M1+M2)µk−(N1N2+N1+N2)νk)

]T
(12)

is a mirror factor vector reflecting the relationship be-
tween V and Ṽ, and Z is a noise tensor with the
(M2, N2, 1)-th and the (M1M2 + M1, N1N2 + N1, 2)-th
elements being σ2

n while all others being 0.
It is observed from Fig. 2(a) that there exist holes

in several rows and columns of V, resulting in whole
rows and columns of missing elements in U and Ũ .
Since the conventional matrix completion approaches
require missing elements in an incomplete matrix to be
randomly distributed, we cannot directly implement the
matrix completion on U or Ũ . Accordingly, there are
lateral and horizontal slices of holes in W as shown
in Fig. 2(b), and the corresponding incomplete coarray

tensor U possesses whole slices of missing elements, as
illustrated in Fig. 3(a).

B. Structured coarray tensor formulation

To exploit the enlarged virtual array aperture brought
by the discontinuous virtual cubic array W, the corre-
sponding slice-missing coarray tensor U should be com-
pleted, such that the coarray tensor processing can be im-
plemented at the Nyquist rate. However, the existing low-
rank tensor completion techniques under the premise of
random missing pattern [30, 31] are not applicable here.
In this regard, we propose shift dimensional augmenting
and coarray tensor reshaping approaches to reformulate
the coarray tensor U as a structured one with dispersed
missing elements.

To begin with, in order to distribute the slices of miss-
ing elements in U , as shown in Fig. 3, we first segment
U into Ux × Uy coarray sub-tensors Uux,uy ∈CLx×Ly×2

with the positions of extracted elements indexed by
[ux, ux+Lx−1], [uy, uy+Ly−1], and {1, 2} in three re-
spective dimensions. Here, we have ux ∈ {1, 2, · · · , Ux},
uy ∈ {1, 2, · · · , Uy}, and

Ux = Jx + 1− Lx, Uy = Jy + 1− Ly. (13)

Since the number of coarray sub-tensors Ux > 2 and
Uy > 2, the size of coarray sub-tensors satisfies

2 6 Lx 6 Jx − 1, 2 6 Ly 6 Jy − 1. (14)

By introducing two segmentation matrices

Sux =

 0(ux−1)×Lx
ILx×Lx

0(Jx−Lx−ux+1)×Lx

 ∈ CJx×Lx , (15)

Suy =

 0(uy−1)×Ly
ILy×Ly

0(Jy−Ly−uy+1)×Ly

 ∈ CJy×Ly , (16)

the coarray sub-tensor Uux,uy can be expressed as

Uux,uy = U ×1 Sux ×2 Suy . (17)
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(a) (b)

Observed elements

Coarray Tensor Completion

Completed elements

Fig. 4. Illustration of coarray tensor completion. (a) The reformulated coarray tensor D with dispersed missing
elements. (b) The completed coarray tensor D̄.

As depicted in Fig. 3(b), the coarray sub-tensors
Uux,uy and Uux+1,uy have the same angular information
along the y-axis, but a one-step shifting relationship along
the x-axis. Thus, Ux coarray sub-tensors U :,uy can be
concatenated along the fourth dimension to generate a 4-
D tensor

Quy=
[
U1,uy ,U2,uy , · · · ,UUx,uy

]
t4
∈CLx×Ly×2×Ux , (18)

∀uy = 1, 2, · · · , Uy. Similarly, there is a one-step shifting
relationship along the y-axis between 4-D tensors Quy

and Quy+1. Hence, the Uy 4-D tensors are further con-
catenated along the fifth dimension to formulate a five-
dimensional (5-D) coarray tensor

T =
[
Q1,Q2, · · · ,QUy

]
t5
∈ CLx×Ly×2×Ux×Uy , (19)

whose five dimensions characterize the angular informa-
tion along the x, y-axes, the mirror information, and the
shifting information along the x, y-axes, respectively. As
such, the segmented coarray sub-tensors of the coarray
tensor U have been concatenated to generate two addi-
tional shifting dimensions, and the missing elements are
distributed across the total five dimensions.

Since the five dimensions of T can be categorized
into angular, shifting, and mirror dimensions, they can
be structurally merged to construct a 3-D incomplete
structured coarray tensor

D , T {1,2},{4,5},{3} ∈ CLxLy×UxUy×2, (20)

as depicted in Fig. 4(a). The reformulated coarray ten-
sor D possesses structurally dispersed missing elements,
which is demonstrated in the following Proposition.

Proposition: There is no missing slice in the reformu-
lated coarray tensor D, whose dispersed missing elements
can be structurally mapped from the missing slices of U .

Proof: Based on the proposed shift dimensional aug-
menting and coarray tensor reshaping approaches, the
elements in the reformulated coarray tensor D can be
mapped from the initial coarray tensor U as

D(j1,j2,j3) =T (mod(j1,Lx),bj1/Lxc,j3,mod(j2,Ux),bj2/Uxc)

=U (mod(j1,Lx)+mod(j2,Ux)−1,bj1/Lxc+bj2/Uxc−1,j3),
(21)

where D(j1,j2,j3) denotes the (j1, j2, j3)-th element in D,
j1 ∈ {1, 2, · · · , LxLy}, j2 ∈ {1, 2, · · · , UxUy}, and j3 ∈

{1, 2}. Therefore, the positions of both observed elements
and missing elements in D are determined as long as the
size of coarray sub-tensors (Lx, Ly) is given.

We then prove that there is no missing slice in the
reformulated coarray tensor D by contradiction. Assume
that the j1-th slice of elements in D is entirely missing,
i.e., for an invariant index j1 and ∀j2∈{1, 2, · · · , UxUy},
∀j3 ∈ {1, 2}, D(j1,j2,j3) denotes missing elements. Then,
according to the mapping relationship established in (21),
the corresponding elements in the initial coarray ten-
sor U , i.e., U (mod(j1,Lx)+mod(j2,Ux)−1,bj1/Lxc+bj2/Uxc−1,j3),
is missing. For the incomplete coarray tensor U , at
least one of the indices mod(j1, Lx) + mod(j2, Ux) − 1,
bj1/Lxc+ bj2/Uxc − 1, j3 should be a fixed value to
indicate its whole missing slices. However, none of these
indices can be practically fixed with an invariant j1 and
∀j2 ∈ {1, 2, · · · , UxUy}, ∀j3 ∈ {1, 2}, implying that the
missing elements in U are not concentrated in a single
slice. This is in conflict with the fact that there are missing
slices in U . Thus, based on the contradiction analysis,
the missing slice have been sufficiently dispersed in the
reformulated coarray tensor D. �

C. Coarray sub-tensor size selection

Although the size of the coarray sub-tensors Uux,uy

can be selected within Lx ∈ [2, Jx−1] and Ly ∈ [2, Jy−1],
different (Lx, Ly) pairs will cause different positions of
the dispersed missing elements, as well as their percentage
in the reformulated coarray tensor D. To complete D
in an effective manner, its dispersion level of missing
elements should be as high as possible, while the percent-
age of missing elements should be as small as possible
simultaneously.

Let Ω be the index set of missing elements in D, the
dispersion level of missing elements can be measured by
the summation of Euclidean distances between each pair
of missing elements in D, i.e.,

ψ =
∑

ω1,ω2∈Ω,ω1 6=ω2

‖ω1 − ω2‖2, (22)

where ω1,ω2 denote the indices of a missing element pair.
Meanwhile, the percentage of missing elements in D can
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be calculated as

γ =
|Ω|

2LxLyUxUy
. (23)

To satisfy the requirement for the utmost dispersion
level and the least percentage of missing elements in
D, the size of coarray sub-tensors can be optimized by
solving the following integer programming problem

max
Lx,Ly

ψ/γ

s.t. 2 6 Lx 6 Jx − 1,

2 6 Ly 6 Jy − 1, Lx, Ly ∈ N,

(24)

where the objective function is the dispersion-to-
percentage ratio (DPR) of missing elements in D. The
optimization problem can be efficiently solved by travers-
ing Lx and Ly in their respective ranges [2, Jx − 1] and
[2, Jy−1] to find the maximum DPR of missing elements.

It is worth to point out that the optimal pair (Lx, Ly)
remains fixed for a given coprime planar array geometry.
Therefore, the optimal size of coarray sub-tensors Uux,uy

can be determined off-line, and will not increase the
computational complexity of DOA estimation.

IV. Coarray Tensor Completion for DOA Estimation

In this section, we elaborate a coarray tensor com-
pletion algorithm for 2-D DOA estimation. In particular,
we impose a low-rank regularization on the reformulated
coarray tensor to complete its missing elements. Then,
we decompose the completed coarray tensor to estimate
azimuth and elevation in closed-form solutions. Finally,
we analyze the computational complexity of the proposed
algorithm.

A. Coarray tensor completion

The low-rank regularization can now be imposed on
the reformulated coarray tensor D with an optimal shape.
Based on the principle of tensor rank relaxation [35], low-
rank coarray tensor completion can be formulated as a
coarray tensor nuclear norm minimization problem

min
D̄
‖D̄‖∗=

o(D̄)∑
j=1

αj‖[D̄](j)‖∗

s.t. PΩ̄
(
D̄
)

= PΩ̄ (D) ,

(25)

where the optimization variable D̄ ∈ CLxLy×UxUy×2 is
the completed coarray tensor, Ω̄ is the complement set
of Ω, i.e., the index set of observed elements in D, and
αj > 0 is the non-negative weight satisfying

∑o(D̄)
j=1 αj =

1. The optimization problem (25) aims to minimize the
tensor nuclear norm of D̄ under the constraint that all
observed elements in D are kept in D̄, where the coarray
tensor nuclear norm is a convex combination of its matrix
unfoldings’ nuclear norms.

The convex optimization problem (25) cannot be
directly solved because of the non-smooth and non-
differentiable nuclear norm terms ‖[D̄](j)‖∗. Hence, we

prefer to use ADMM, which can effectively solve large-
scale optimization problems with multiple non-smooth
terms in the objective [36]. In particular, to ensure that
the three nuclear norm terms ‖[D̄](1)‖∗, ‖[D̄](2)‖∗ and
‖[D̄](3)‖∗ in the objective of (25) can be independently
optimized, we introduce three auxiliary tensors Y1 =
Y2 = Y3 to transform the coarray tensor nuclear norm
minimization problem (25) into an equivalent form

min
D̄,Yj

‖D̄‖∗

s.t. PΩ̄
(
D̄
)

= PΩ̄ (D) ,

Yj − D̄ = O, j ∈ {1, 2, · · · , o(D̄)}.

(26)

The detailed procedure of ADMM for solving the com-
pleted coarray tensor D̄ in (26) can be found in Appendix
A. The completed coarray tensor D̄ shown in Fig. 4(b)
corresponds to a filled virtual cubic array

W̄=
{
(xW̄, yW̄, zW̄)|xW̄=[−M1M2+M1, 2M1M2−M2]d,

yW̄=[−N1N2+N1, 2N1N2−N2]d,

zW̄=[1, 2]d
}
,

(27)

as shown in Fig. 2(c).
The iterative ADMM procedure converges as long as

the relative error of the completed coarray tensor between
two successive iterations is less than a convergence thresh-
old ξADMM > 0 [31], i.e.,

‖D̄(nA+1) − D̄(nA)‖F
‖D̄(nA)‖F

6 ξADMM. (28)

Here, D̄(nA) denotes the completed coarray tensor at
the nA-th iteration. The convergence of the proposed
ADMM solution to coarray tensor completion satisfies
the following theorem.

Theorem 1: The iterative completed coarray tensor
sequence (D̄(nA)

,Y(nA)
j ) generated by the ADMM for

coarray tensor completion is convergent.
Proof : By introducing the indicator function

1Ω̄
(
D̄(j1,j2,j3)

)
=

{
0, if (j1, j2, j3) ∈ Ω̄,

1, if (j1, j2, j3) /∈ Ω̄,
(29)

to substitute the constraint PΩ̄
(
D̄
)

= PΩ̄ (D), (26) can
be equivalently represented as

min
D̄,Yj

‖D̄‖∗ + 1Ω̄(D̄)

s.t. Yj ×1 I
(1)
Jx×Jx ×2 I

(1)
Jy×Jy ×3 I

(1)
2×2

− D̄ ×1 I
(2)
Jx×Jx ×2 I

(2)
Jy×Jy ×3 I

(2)
2×2 = O.

(30)

By multiplying Yj and D̄ with identity matrices I(1)

and I(2), the constraint in (30) equals to the constraint
Yj − D̄ = O in (26). We then demonstrate that the
reformulated optimization problem (30) satisfies the fol-
lowing properties, which are the necessary conditions for
the global convergence of ADMM [37].

A1. Coercivity: For the feasible set

Θ = {(D̄,Yj) : Yj − D̄ = O}, (31)
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‖D̄‖∗ + 1Ω̄(D̄) is coercive over Θ, i.e.,

‖D̄‖∗ + 1Ω̄(D̄)→∞, (32)

if (D̄,Yj) ∈ Θ and ‖(D̄,Yj)‖2 →∞. Here, the notation
→∞ represents tending to infinity.

A2. Feasibility: Since the coefficient matrices of Yj

and D̄ are both identity matrices, we have I(1) ⊆ I(2).
Hence, the feasibility of (30) holds.

A3. Lipschitz sub-minimization paths: For any fixed
D̄, E1 : I(1) → CJx×Jy×2 obeying

E1(G)= argmin
Yj

{
‖Yj‖∗ + 1Ω̄(D̄) :

Yj ×1 I
(1)
Jx×Jx ×2 I

(1)
Jy×Jy ×3 I

(1)
2×2 =G

} (33)

is a Lipschitz continuous map. Similarly, for any fixed
Yj , E2 : I(2) → CJx×Jy×2 obeying

E2(G)= argmin
D̄

{
‖Yj‖∗ + 1Ω̄(D̄) :

D̄ ×1 I
(2)
Jx×Jx ×2 I

(2)
Jy×Jy×3 I

(2)
2×2 =G

} (34)

is a Lipschitz continuous map.
A4. Objective-‖ · ‖∗ regularity: The coarray tensor

nuclear norm function ‖D̄‖∗ is Lipschitz differentiable
[38], such that the regularity of the objective ‖D̄‖∗ holds.

A5. Objective-1Ω̄(·) regularity: The indicator function
1Ω̄(D̄) is lower semi-continuous [37], such that the
regularity of the objective 1Ω̄(D̄) holds.

Since the coarray tensor completion problem (30) fits
the properties A1∼A5, the iterative completed coarray
tensor sequence (D̄(nA)

,Y(nA)
j ) generated by the ADMM

solution for coarray tensor completion is convergent. �

B. DOA estimation via coarray tensor CPD

Since the completed coarray tensor D̄ corresponds to
the filled virtual cubic array W̄ with uniformly spaced
virtual sensors, the CPD can be applied to D̄ to retrieve
the elevation and azimuth of sources. In particular, to
obtain a CPD representation of D̄, we first define the
completed version of the initial coarray tensor U , i.e., Ū .
According to the definition of U in (11), its completed
version Ū can be represented as

Ū =

K∑
k=1

σ2
sk
b̄(µk) ◦ b̄(νk) ◦ hk + Z̄, (35)

where
b̄(µk)=

[
e−π(−M1M2+M1)µk , e−π(−M1M2+M1+1)µk ,

· · · , e−π(2M1M2−M2)µk
]T (36)

and
b̄(νk)=

[
e−π(−N1N2+N1)νk , e−π(−N1N2+N1+1)νk ,

· · · , e−π(2N1N2−N2)νk
]T (37)

are respectively the steering vectors of the filled virtual
cubic array W̄ along the x-axis and the y-axis, and Z̄ is a
residual noise tensor after the coarray tensor completion.

Then, similar to the shift dimensional augmenting
from 3-D coarray tensor U to 5-D augmented coarray
tensor T in Section III.B, the completed version of T
can be constructed from Ū as

T̄ =

K∑
k=1

σ2
sk
v(µk) ◦ v(νk) ◦ hk ◦ g(µk) ◦ g(νk)+B. (38)

Here,

v(µk)=
[
e−π(−M1M2+M1)µk , e−π(−M1M2+M1+1)µk,

· · · , e−π(−M1M2+M1+Lx−1)µk
]T (39)

and
v(νk)=

[
e−π(−N1N2+N1)νk , e−π(−N1N2+N1+1)νk ,

· · · , e−π(−N1N2+N1+Ly−1)νk
]T (40)

are respectively the steering vectors of the subarray

W̄s=
{
(xW̄s

, yW̄s
, zW̄s

)|

xW̄s
=[−M1M2+M1,−M1M2+M1+Lx−1]d,

yW̄s
=[−N1N2+N1,−N1N2+N1+Ly−1]d,

zW̄s
=[1, 2]d

} (41)

segmented from W̄ along the x-axis and the y-axis,

g(µk) = [1, e−πµk , · · · , e−π(Ux−1)µk ]T,

g(νk) = [1, e−πνk , · · · , e−π(Uy−1)νk ]T
(42)

are respectively the shifting vectors along the x-axis
and the y-axis, and B is a 5-D residual noise tensor
generated from the shift dimensional augmenting on Z̄ .
Following the coarray tensor reshaping procedure (20),
the completed coarray tensor D̄ can be obtained as

D̄ , T̄ {1,2},{4,5},{3} =

K∑
k=1

σ2
sk
vk ◦ gk ◦ hk + B̄, (43)

where
vk = v(νk)⊗ v(µk) ∈ CLxLy ,

gk = g(νk)⊗ g(µk) ∈ CUxUy ,
(44)

are respectively the CP factors characterizing the angular
and shifting information, and B̄ , B{1,2},{4,5},{3} is the
corresponding reshaped 3-D residual noise tensor.

Hence, applying CPD to the completed coarray tensor
D̄ (43) yields the estimated CP factors v̂k, ĝk and ĥk.
The detail in the CPD-based estimation of these factors
is provided in Appendix B. Then, by exploiting the
Kronecker structure of v̂k and ĝk in (44), µ̂k and ν̂k can
be estimated as

µ̂k =

[
∠
( v̂k(ζ1+1)

v̂k(ζ1)

)
+∠

( ĝk(ζ2+1)

ĝk(ζ2)

)]
/(2π),

ν̂k =

[
∠
( v̂k(Lx+ι1)

v̂k(ι1)

)
+∠

( ĝk(Ux+ι2)

ĝk(ι2)

)]
/(2π),

(45)

where mod(ζ1, Ly) 6= 0, ∃ ζ1 ∈ {1, 2, · · · , LxLy − 1},
mod(ζ2, Uy) 6= 0, ∃ ζ2 ∈ {1, 2, · · · , UxUy − 1}, and
ι1 ∈ {1, 2, · · · , LxLy −Lx}, ι2 ∈ {1, 2, · · · , UxUy −Ux}.
Here, v̂k(ζ1) denotes the ζ1-th element in v̂k. Note that, the
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CPD of D̄ is unique only up to scaling and permutation
ambiguities. The permutation ambiguity of the estimated
CP factors amounts to shuffling the sequence of sources,
which does not influence the DOA estimation. On the
other hand, the scaling ambiguity of the estimated CP fac-
tors can be resolved by the scaling normalization during
the retrieval of µ̂k and ν̂k in (45). Specifically, one row of
the estimated CP factor are divided by its previous row to
retrieve µ̂k and ν̂k, e.g., v̂k(ζ1+1)/v̂k(ζ1), which normalizes
the scaling. As such, the estimated CP factors are immune
to both scaling and permutation ambiguities. According to
the relationship between (θk, φk) and (µk, νk) established
in Section II, the closed-form solution to the azimuth and
elevation of the k-th source is given by

θ̂k = arctan(ν̂k/µ̂k),

φ̂k = arcsin
(√

µ̂2
k + ν̂2

k

)
.

(46)

C. Computational complexity analysis

As discussed above, the proposed algorithm mainly
involves cross-correlation tensor calculation, coarray ten-
sor completion, and coarray tensor decomposition, whose
computational complexities are O (M1M2N1N2T ),
O ((LxLy+UxUy)LxLyUxUyNADMM) and
O
(
(K3+LxLyUxUy)KNCPD

)
, respectively. Here,

NADMM and NCPD denote the number of iterations
for the ADMM solution and the completed coarray
tensor CPD, respectively. Since the computational
complexities of the latter two have a higher order than
that of the first one, the computational complexity
of the proposed algorithm is given as O

(
(LxLy +

UxUy)LxLyUxUyNADMM + LxLyUxUyKNCPD

)
.

In comparison with the matrix-based methods, the
computational complexity of the 2-D MUSIC method [39]
is O

(
NMG(M1N1(M1N1−K) + M2N2(M2N2−K))

)
,

where NMG is the total number of spectral peak searching
grids. The computational complexity of the coarray spar-
sity method [40] is O

(
K3NSRN

3
SG

)
, where NSR and NSG

are respectively the numbers of iterations and spatial sam-
pling grids. For 2-D DOA estimation, both the ADMM for
coarray tensor completion and the CPD of the completed
coarray tensor efficiently converge within hundreds of
iterations, whereas the number of either spectral peak
searching grids or sampling grids has an order of 106

with the interval of grids being 0.1◦. Hence, we have both
NMG, NSG�Mi, Ni and NMG, NSG �NADMM, NCPD.
This indicates that the computational complexity of the
proposed algorithm is lower than those of the 2-D MUSIC
and coarray sparsity methods. Therefore, although the
coarray tensor model operates on the multi-dimensional
signal statistics, the proposed algorithm is still more
computationally efficient than the matrix-based methods.

In comparison with the coarray tensor MUSIC method
[41], its computational complexity can be calculated
as O

(
(K3 +JxJy)KNCPD +NMG(M1N1(M1N1−K) +

M2N2(M2N2−K))
)
. Similarly, since NMG�Mi, Ni and

NMG � NADMM, NCPD, the required exhausting spec-
trum searching procedure for the coarray tensor MUSIC
method makes it more costly than the proposed algorithm
with a closed-form solution.

In summary, although the proposed algorithm includes
tensor modeling and tensorial optimization, a closed-form
solution is available for the proposed algorithm via the
completed coarray tensor decomposition to avoid either
spectral peak searching or sampling gridding. As such,
it has a moderate computational complexity compared to
the conventional matrix-based and tensor-based methods.

V. Simulation

In the simulations, we consider a coprime planar array
with M1 = 2, N1 = 3, M2 = 3, and N2 = 4. Hence, the
total number of sensors is 35. Accordingly, the size of
the discontinuous virtual cubic array W is 14 × 30 × 2.
The weights defining the coarray tensor nuclear norm are
set to α1 = α2 = α3 = 1/3 in the coarray tensor nuclear
norm minimization problem (25). The penalty constant in
the augmented Lagrangian function of ADMM is set to
ρ=10−4, and the positive constant to iteratively increase
ρ is fixed at u= 1.1. The convergence thresholds of the
ADMM and the coarray tensor CPD are set to ξADMM =
10−12 and ξCPD = 10−12, respectively. Unless otherwise
specified, we present simulation results in two scenarios,
namely, the number of snapshots is fixed at T = 300
when the signal-to-noise ratio (SNR) varies, and the SNR
is fixed to 0 dB when the number of snapshots varies. For
each scenario, NMC = 1, 000 Monte Carlo trials are run.
All evaluated methods are implemented with MATLAB1.

A. Performance of the proposed algorithm with the
optimal coarray sub-tensor size

We first select the optimal coarray sub-tensor size
according to the integer programming problem (24).
Considering that Jx = 14 and Jy = 30, there are
total 336 different combinations for the possible size
(Lx, Ly), among which the pair of (Lx, Ly) = (7, 14)
has the maximum DPR of missing elements while the
pair of (Lx, Ly) = (13, 2) has the minimum DPR. For
the reference, we list a few candidate pairs and their
corresponding DPRs in TABLE II.

To verify the effectiveness of the proposed coarray
sub-tensor size selection strategy, in Fig. 5, we compare
the DOA estimation performance of the proposed coarray
tensor completion algorithm using different size pairs
listed in TABLE II. The root-mean-square error (RMSE)

RMSE=

√√√√ 1

2KNMC

NMC∑
nMC=1

K∑
k=1

[
(θ̂k,nMC

−θk)2+(φ̂k,nMC
−φk)2

]
,

(47)

1The MATLAB code of the proposed algorithm is available at
https://github.com/HangZheng98/Coarray-Tensor-Completion-for-
DOA-Estimation.
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TABLE II
THE DISPERSION-TO-PERCENTAGE RATIO CORRESPONDING TO DIFFERENT COARRAY SUB-TENSOR SIZE

(Lx, Ly) (13, 2) (2, 3) (5, 28) (13, 27) (10, 4) (4, 5) (8, 8) (7, 14)

DPR (dB) 76.03 86.49 87.48 88.17 89.92 92.56 94.56 95.91
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Fig. 5. DOA estimation performance of the proposed algorithm with different coarray sub-tensor sizes. (a) RMSE
versus SNR. (b) RMSE versus the number of snapshots.

is adopted as the performance evaluation metric, where
(θ̂k,nMC , φ̂k,nMC) is the estimate of (θk, φk) for the nMC-
th Monte Carlo trial. In this simulation, K = 2 sources
are assumed from the directions (θ1, φ1) = (25.6◦, 30.6◦)
and (θ2, φ2) = (50.5◦, 40.5◦), respectively.

It is observed from Fig. 5 that, as we predicted,
the coarray sub-tensor size pair (Lx, Ly) = (7, 14) with
the maximum DPR of missing elements depicts the best
estimation accuracy. In contrast, the size pair (Lx, Ly) =
(13, 2) with the minimum DPR has the worst estimation
accuracy. Generally speaking, the higher the DPR, the
better the DOA estimation accuracy. In the following
simulations, the size of coarray sub-tensors Uux,uy will
be fixed to 7 × 14 × 2, leading the reformulated coarray
tensor D ∈ C56×238×2.

B. Estimation accuracy comparison

Now we compare the DOA estimation performance of
the proposed coarray tensor completion algorithm to the
matrix-based methods including the 2-D MUSIC method
[39], the coarray sparsity method (‘Co-Sparsity’) [40],
the coarray ESPRIT method (‘Co-ESPRIT’) [17] and
the coarray covariance matrix completion method (‘Co-
CMC’) [28], as well as the tensor-based methods includ-
ing the 2-D PARAFAC method [42] and the coarray tensor
MUSIC method (‘Co-T-MUSIC’) [41]. Specifically, the 2-
D MUSIC method adopts the idea of coprime subarray
decomposition [43] for ambiguity-free DOA estimation
without deriving coarray statistics. In contrast, both the

coarray sparsity and coarray ESPRIT methods derive
vectorized coarray signals, then respectively implement
sparse recovery optimization and ESPRIT on the coarray
covariance matrix. However, they directly extract the con-
tinuous part of the augmented virtual array rather than in-
terpolating it. In this regard, the coarray covariance matrix
completion method applies low-rank matrix completion
to the incomplete coarray covariance matrix to obtain
an interpolated virtual array. As for the tensor-based
methods, the 2-D PARAFAC method extends the idea of
coprime subarray decomposition to the tensorial domain,
while the coarray tensor MUSIC method only exploits the
continuous coarray tensor statistics for enhanced DOA
estimation. In addition, the Cramér-Rao bound for 2-D
DOA estimation with the coprime planar array [44, 45] is
also presented as the reference. The interval of the spectral
peak searching grids for the 2-D MUSIC method and the
coarray tensor MUSIC method, as well as the interval
of the pre-defined sampling grids for the coarray sparsity
method are set to 0.1◦. The other simulation settings are
the same as those in the first simulation. The RMSEs of
azimuth angle estimation

RMSEθ =

√√√√ 1

KNMC

NMC∑
nMC=1

K∑
k=1

(θ̂k,nMC
− θk)2 (48)

and elevation angle estimation

RMSEφ =

√√√√ 1

KNMC

NMC∑
nMC=1

K∑
k=1

(φ̂k,nMC
− φk)2 (49)
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Fig. 6. Estimation accuracy comparison of the azimuth angle. (a) RMSEθ versus SNR. (b) RMSEθ versus the
number of snapshots.
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Fig. 7. Estimation accuracy comparison of the elevation angle. (a) RMSEφ versus SNR. (b) RMSEφ versus the
number of snapshots.

are respectively compared in Fig. 6 and Fig. 7.
The coarray sparsity and coarray ESPRIT methods

yield a remarkable improvement in estimation accuracy
compared to the 2-D MUSIC method. Indeed, the coarray
processing offers an augmented virtual array to improve
the estimation accuracy, whereas the coprime subarray
decomposition approach reduces the effective physical
array aperture and sensor number for ambiguity elimi-
nation. Furthermore, by interpolating the discontinuous
virtual array, the coarray covariance matrix completion
method improves the estimation accuracy compared to
the coarray sparsity method, and also outperforms the
coarray ESPRIT method in most of the simulated sce-
narios including SNR range or snapshots. Likewise, the
coarray tensor MUSIC method also presents an enhanced
performance compared to both the 2-D MUSIC and 2-D
PARAFAC methods by extending coarray processing to

the tensorial domain. Also, it is worth mentioning that the
utilization of multi-dimensional tensor statistics benefits
the 2-D DOA estimation, such that the 2-D PARAFAC
method outperforms the 2-D MUSIC method, and the
coarray tensor MUSIC method outperforms both the 2-
D MUSIC and coarray sparsity methods. Limited by the
fixed spectral peak searching grid, the coarray tensor
MUSIC method is inferior to the coarray ESPRIT method
when the SNR increases.

Compared to the competing matrix-based methods, the
proposed coarray tensor completion algorithm presents
the best accuracy over the simulated SNR range or
snapshots. It is because the proposed algorithm effec-
tively exploits structural signal characteristics of the
coarray statistics, which is ignored by the matrix-based
approaches. Similarly, the proposed algorithm achieves a
significant improvement in estimation accuracy compared
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Fig. 8. Angular resolution comparison. (a) PSR of azimuth versus the angular spacing δ. (b) PSR of elevation
versus the angular spacing δ.

to the competing tensor-based methods, which owes to the
utilization of the entire discontinuous virtual cubic array
W via the coarray tensor completion. In contrast, the 2-
D PARAFAC method does not exploit the coarray tensor
statistics, while the coarray tensor MUSIC method only
considers the continuous part of the derived virtual array.

C. Angular resolution comparison

In Fig. 8, we compare the angular resolution of all
evaluated methods by considering two closely separated
sources (θ1, φ1) and (θ2, φ2) with an angular spacing of
δ. Specifically, both θ1 and φ1 are randomly selected
between [20◦, 40◦] for each trial, while θ2 and φ2 re-
spectively maintain angular spacings of δθ and δφ with
θ1 and φ1, i.e., (θ2, φ2) = (θ1 + δθ, φ1 + δφ). Here, δθ
is randomly generated within [0, δ], while δφ is then
calculated to satisfy

√
δ2
θ + δ2

φ = δ. Two sources are
regarded as distinguishable respectively on the azimuth
domain and on the elevation domain if |θ̂k,nMC−θk|<δ/2
and |φ̂k,nMC−φk|<δ/2 for each trial. The probabilities of
successful resolution (PSRs) of azimuth and elevation can
be respectively calculated as the percentages of successful
trials.

It is clear that the coarray-based methods, namely,
the coarray sparsity method, the coarray ESPRIT method
and the coarray tensor MUSIC method, present higher
angular resolutions compared to the coprime subarray
decomposition-based methods, namely, the 2-D MUSIC
method and the 2-D PARAFAC method. It is also noted
that, the coarray covariance matrix completion method
presents a further improvement in angular resolution com-
pared to the coarray ESPRIT method. These phenomena
owe to the enlarged virtual array aperture compared to the
limited sparse subarray apertures. Moreover, the proposed
coarray tensor completion algorithm presents the highest
angular resolution among all evaluated methods. In partic-

ular, compared to the matrix-based methods, the proposed
algorithm obtains the improvement from the virtual cubic
array formulation by preserving the relevance among
the virtual sensors. On the other hand, compared to the
coarray tensor MUSIC method utilizing the continuous
part of the virtual planar array U only, the proposed
algorithm demonstrates an enhanced resolution, which is
benefited from the larger aperture of the filled virtual
cubic array W̄.

D. Estimation accuracy comparison for coherent
sources

Although far-field narrowband sources are assumed
to be uncorrelated in our signal model, the proposed
coarray tensor completion algorithm also works for co-
herent sources DOA estimation. In the last example, we
evaluate the performance of the proposed algorithm for
K = 2 fully correlated sources with DOAs (θ1, φ1) =
(21.6◦, 32.6◦) and (θ2, φ2) = (50.5◦, 65.5◦). Due to the
coherency between the coherent sources’ signals, the
second source signal s2 can be represented as s2 = βs1,
where β ∈ C is an attenuation factor. The proposed
algorithm is compared to the spatial smoothing MUSIC
method (‘SS-MUSIC’) [46] and the coarray ESPRIT
method [17]. To be specific, the spatial smoothing MU-
SIC method incorporates the ideas of spatial smoothing
and coprime subarray decomposition, while the coarray
ESPRIT method applies spatial smoothing to the second-
order coarray statistics for decorrelated DOA estimation.
The RMSE of DOA estimation defined in (47) is used as
the evaluation metric, where the real and imaginary parts
of β are both randomly generated following the zero-mean
unit-variance Gaussian distribution for each trial.

As shown in Fig. 9, the proposed coarray tensor com-
pletion algorithm outperforms both the spatial smooth-
ing MUSIC and coarray ESPRIT methods for coherent
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Fig. 9. Estimation accuracy comparison for coherent sources. (a) RMSE versus SNR. (b) RMSE versus the number
of snapshots.

sources DOA estimation. This comes from the fact that
the proposed algorithm takes full advantage of coar-
ray information with tensorial optimization for multi-
dimensional sub-Nyquist signals, leading to an enhanced
source decorrelation capability.

VI. Conclusion

In this paper, we proposed a coarray tensor completion
algorithm for 2-D DOA estimation. The proposed algo-
rithm makes full use of the discontinuous virtual array
derived from the cross-correlation tensor statistics, and
the corresponding equivalent second-order signals are rep-
resented by an incomplete coarray tensor. To impose an
effective low-rank regularization on the coarray tensor, its
whole missing slices are sufficiently dispersed under the
principle of maximizing the DPR of missing elements. As
such, the reformulated coarray tensor can be completed by
solving a coarray tensor nuclear norm minimization prob-
lem via the ADMM. Meanwhile, the global convergence
of the coarray tensor completion problem is theoretically
proved. Then, the 2-D DOAs of sources are estimated in
a closed-form manner by applying CPD to the completed
coarray tensor corresponding to the filled virtual array.
Simulation results corroborate the superior performance
of the proposed algorithm in both estimation accuracy
and resolution compared to competing methods.

The proposed algorithm can be extended to other
parameter estimation scenarios with partially augmentable
sparse arrays. For example, the slice-missing coarray
tensor completion method can be applied to the sparse
MIMO system for joint angle/frequency estimation with
full utilization of multi-dimensional coarray statistics.
Moreover, in imaging scenarios, the designed tensor seg-
mentation and structured tensor formulation approaches
can be adopted to restore images or accelerate imaging
process.

Appendix A
ADMM implementation for coarray tensor completion

By introducing dual variables Mj ∈ CLxLy×UxUy×2

of D̄ with j ∈
{

1, 2, · · · , o(D̄)
}

, the augmented La-
grangian function of the formulated coarray tensor nuclear
norm minimization problem (26) can be defined as

L
(
D̄,Y1,Y2,Y3,M1,M2,M3

)
= ‖D̄‖∗+ <Yj−D̄,Mj> +

ρ

2

∥∥Yj − D̄
∥∥2

F
,

(50)

where ρ > 0 is the penalty constant. Based on the
framework of ADMM, D̄, Yj and Mj at the (nA +1)-th
iteration can be updated as

Y(nA+1)
j = argmin

Yj
L
(
D̄(nA)

,Yj ,M(nA)
j

)
,

D̄(nA+1)
= argmin

D̄
L
(
D̄,Y(nA+1)

j ,M(nA)
j

)
,

M(nA+1)
j = M(nA)

j − ρ
(
Y(nA+1)
j − D̄(nA+1)

)
.

(51)

The closed-form solution to Y(nA+1)
j and D̄(nA+1) in

(51) can be obtained as

Y(nA+1)
j =fold(j)

(
Υαj

ρ

([
D̄(nA)]

(j)
+

1

ρ

[
M(nA+1)

j

]
(j)

))
,

PΩ

(
D̄(nA+1)

)
=PΩ

( 1

o(D̄)

(o(D̄)∑
j=1

Y(nA+1)
j −1

ρ
M(nA)

j

))
,

PΩ̄

(
D̄(nA+1)

)
=PΩ̄ (D) ,

(52)

where fold(j)(·) represents the reversed operator of mode-
j tensor unfolding, and

Υαj
ρ

(X) = FXΣ

(
αj
ρ

)
X WX (53)

denotes the shrinkage singular value decomposition op-
erator on X ∈ CX1×X2 . Here, FX , WX respectively
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represent the left singular matrix and the right singular
matrix of X , and

Σ

(
αj
ρ

)
X = diag

(
max

(
ηl −

αj
ρ
, 0
))
, (54)

represents the singular value matrix, where ηl denotes
the singular value of X , l ∈

{
1, 2, · · · ,min(X1, X2)

}
,

diag(·) forms a diagonal matrix from its arguments,
min(·) and max(·) respectively represent the minimum
and maximum operators.

Note that, the convergence of (51) can be accelerated
by adaptively increasing the penalty constant ρ [31, 47]. In
our simulations, we iteratively increase ρ by multiplying
it with a positive constant u > 1, i.e., ρ(nA+1) = uρ(nA).

Appendix B
CPD of the completed coarray tensor

The CPD of the completed coarray tensor D̄ in (43)
aims to approximate the outer product of its CP factors
while minimizing the effect of the residual noise tensor
B̄, which can be defined as the following least squares
problem

min
V̂ ,Ĝ,Ĥ

∥∥D̄ −J ×1 V̂ ×2 Ĝ×3 Ĥ
∥∥2

F
. (55)

Here,

V̂ =
[
v̂1, v̂2, · · · , v̂K

]
∈ CLxLy×K ,

Ĝ =
[
ĝ1, ĝ2, · · · , ĝK

]
∈ CUxUy×K ,

Ĥ =
[
ĥ1, ĥ2, · · · , ĥK

]
∈ C2×K ,

(56)

are the factor matrices of D̄, and J ∈ CK×K×K is the
signal power tensor with σ2

sk
on its main diagonal.

The optimization problem (55) can be solved by
the trilinear alternating least squares technique, which
iteratively updates V̂ , Ĝ and Ĥ as

V̂ = argmin
V̂

∥∥∥[D̄](1) − V̂
(
Ĥ � Ĝ

)T∥∥∥2

F
,

Ĝ = argmin
Ĝ

∥∥∥[D̄](2) − Ĝ
(
Ĥ � V̂

)T∥∥∥2

F
,

Ĥ = argmin
Ĥ

∥∥∥[D̄](3) − Ĥ
(
Ĝ� V̂

)T∥∥∥2

F
.

(57)

For the (nC + 1)-th iteration of CPD, the closed-form
solution to the factor matrices of D̄ can be obtained as

V̂ (nC+1) = [D̄](1)

[(
Ĥ(nC) � Ĝ(nC)

)T]†
,

Ĝ(nC+1) = [D̄](2)

[(
Ĥ(nC) � V̂ (nC)

)T]†
,

Ĥ(nC+1) = [D̄](3)

[(
Ĝ(nC) � V̂ (nC)

)T]†
.

(58)

The iterations in (57) repeat until the relative error of the
decomposed coarray tensor between successive iterations
is smaller than a convergence threshold ξCPD, and the
three estimated factor matrices V̂ , Ĝ and Ĥ can be
utilized for retrieving the azimuth and elevation angles
as in (45).

The CPD of the completed coarray tensor D̄ is essen-
tially unique if

κ(V̂ ) + κ(Ĝ) + κ(Ĥ) > 2K + 2, (59)

where κ(·) denotes the Kruskal’s rank of the factor matrix.
By substituting κ(V̂ ) = min(LxLy,K) = LxLy, κ(Ĝ) =
min(UxUy,K) = UxUy, and κ(Ĥ) = min(2,K) = 2 into
(59), we have

K 6 (LxLy + UxUy)/2, (60)

which provides the upper bound for the number of dis-
tinguishable sources. Note that, since the size of coarray
sub-tensors (Lx, Ly) is optimized based on the principle
of maximizing the DPR of missing elements in the
coarray tensor, we aim to guarantee the best performance
of coarray tensor completion instead of the maximum
degrees-of-freedom. Hence, the upper bound of K in
(60) is not the optimal result. In another work [27], we
investigate the maximum degrees-of-freedom by devising
a different coarray sub-tensor size optimization problem,
which however, is out of scope of this paper.
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