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Abstract—In this work, we propose an uplink power control
(PC) framework compliant with the technical specifications
of the fifth generation (5G) wireless networks. We apply the
fundamentals of reinforcement learning (RL) to develop a power
control algorithm able to learn a strategy that enhances the total
data rate on the uplink channel and mitigates the neighbor cell
interference. The base station (BS) uses a set of commands to
specify by how much the user equipment (UE) transmit power
should change. After implementing such commands, each UE
reports a set of information to its serving BS, and this, in
turn, predicts the next commands to achieve a suitable UE
transmit power level. The BS converts the UE reports into
rewards according to a predefined cost function, which impacts
the longterm behavior of the UE transmit power. The simulation
results indicate a near-optimum performance of the proposed
framework in terms of total transmit power, total data rate, and
network energy efficiency. It provides a self-exploratory power
control strategy that overcomes soft dropping power control
(SDPC) with similar signaling levels.

Index Terms—uplink power control, reinforcement learning

I. INTRODUCTION

Uplink power control (PC) constitutes an essential design
problem of wireless communication networks. This important
radio resource management technique provides mechanisms to
increase the system capacity, coverage, and quality of service
(QoS) while limiting interference to neighbor cells [1]. The
fourth generation (4G) long-term evolution (LTE) supports
several solutions based on well-founded technical literature
to the uplink PC problem with distinct objectives regarding
different deployment scenarios and services [2], [3], [4], [5].

Despite the advances promoted by LTE, there are chal-
lenging performance requirements imposed by new wireless
communication networks use cases, such as enhanced mo-
bile broadband (eMBB), ultra-reliable low-latency communi-
cation (URLLC), and massive machine type communication
(mMTC) [6]. In this context, the development of intelligent
uplink PC strategies is essential to guarantee the QoS spec-
ifications of these use cases, specially for eMBB (higher
data rates) [7] and mMTC (longer battery life for low-power
devices) [8] at similar cost and energy consumption levels
compared with 4G LTE networks [9].
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The fifth generation (5G) radio access technology, also
called new radio (NR), has as one innovative aspect the
support for a large number of antenna elements, which moti-
vates the development of advanced multi-antenna techniques,
such as beamspace massive multiple-input multiple-output
(MIMO) [10]. Since multiple antenna technology has become
a key component of the 5G networks, it has been adopted the
beam-centric design of channels and signals [6]. Consequently,
the uplink PC problems in 5G NR faces more challenging
design concerns compared with 4G LTE and other classical
solutions.

Then, the development of a new uplink PC paradigm to
support 5G NR demands mentioned previously requires more
sophisticated tools. In this context, machine learning (ML)
emerges as a powerful source of mechanisms to uncover
unknown properties of wireless networks, identify correlations,
and suggest novel ways to optimize network deployment [11].
ML provides algorithms to forecast system behavior and
find potential solutions by interacting with the environment.
Enhancing the intelligence of wireless networks is essen-
tial to provide it with self-organization features, like self-
configuration, self-optimization, and self-healing [12]. More-
over, 5G NR devices endowed with intelligence must be able
to control the transmission power while relying on energy
efficiency learning [13]. In this context, the design of an ML-
based uplink PC solution compliant with the 5G NR radio
access technology is a relevant research topic and is the focus
of this work.

ML algorithms belonging to the reinforcement learning
(RL) category are of particular interest to radio resource
management. They learn from interactions with a dynamic
environment on how to achieve a desired behavior. RL is
a relevant tool to empower networks with autonomous self-
adaptive algorithms provided with adaptability and capable of
taking advantage of experience when making decisions [14].
These algorithms demonstrated pattern recognition ability and
can be applied successfully to solve several radio resource
management problems. For more details on RL applications,
the reader may refer to [14], [15], [16] and the references
therein.

In this work, we seek an answer to the question of whether
RL-based uplink PC can help to mitigate inter-cell interference
in 5G NR networks. Although this question is highly relevant
from a research and system development perspective, it has
not been exhaustively and suitably addressed by previous
works, as discussed further in the next section. To this end,
we propose a distributed multi-agent RL-based uplink PC
compliant with 5G NR specifications [17], [18], [19], [20],
[21], [22], [23].
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Specifically, we propose a beam-based uplink PC framework
to provide a self-exploratory solution where the base station
(BS), considered as the decision-maker entity, learns the
most suitable solution to the power control problem on the
uplink. The BS uses a set of commands to specify by how
much the user equipment (UE) transmit power should change.
Based on the UE’s reports generated as a response to those
commands, the BS learns through experience what should
be the best transmit power to be used by its associated UE.
The BS converts the UE reports into rewards according to a
predetermined cost function, which determines the long-term
behavior of the uplink PC.

The remainder of this work is organized as follows. Sec-
tion II discusses related works and our contributions. Sec-
tion III describes the system model assumptions and Sec-
tion IV reviews the fundamental concepts of RL. Then, Sec-
tion V describes the 5G NR specifications to deploy uplink
PC and the proposed RL framework. Simulation results are
discussed in Section VI. Finally, the main conclusions are
drawn in Section VII.

II. LITERATURE REVIEW AND CONTRIBUTIONS

The application of RL-based algorithms into uplink PC
problems constitute a set of self-organized solutions capable
of finding autonomously suitable transmit power levels. Con-
sequently, they can reduce inter-cell interference and increase
system data rate properly. They are suitable techniques and
have been relevant in numerous studies in the field. In [24], the
authors proposed a PC framework to manage the interference
in a cognitive radio network. They modeled the wireless
network as a multi-agent system, where the agents interact di-
rectly with the environment and learn a strategy to manage the
power levels. In their model, the BSs represent the decision-
maker entities which manage the radio resources allocated to
their associated UEs. However, they focused on the downlink
operation and presented results without considerations about
third generation partnership project third generation partner-
ship project (3GPP) specifications. We propose an uplink PC
strategy which follows this multi-agent RL system modeling.
Moreover, we incorporate practical 5G NR specifications into
the proposed framework, such as required signaling, available
power control commands, and hardware constraints.

In [25], the authors considered a more realistic cognitive
radio network, modeled as a wireless regional area network
(WRAN) compliant with the 802.22 [26] standards. Therein,
they considered the downlink and uplink operation and sit-
uations of complete and incomplete information about the
environment. The results indicated that a multi-agent RL sys-
tem could automatically learn a policy to successfully manage
the interference, without introducing signaling overhead in the
system.

In [27], a decentralized uplink PC based on the multi-
agent RL combined with a fractional power control (FPC)
mechanism was proposed for LTE-based multi-tier networks.
In their study, each UE decides the transmit power based
on the channel conditions, namely, the uplink path loss. In
this framework, each UE learns independently the transmit
power without the need to wait for control signaling from
an associated BS. It is show that the solution reduces the

signaling in uplink transmission. However, due to the lim-
ited computational resources of the UE, it also reduces the
processing capability of the decision-maker entity. In our
approach, due to the beam-centric design of 5G NR, several
PC mechanisms must be handled in parallel and in real-time.
Consequently, the BS is considered as the entity endowed with
intelligence. Moreover, we evaluate the impact of different
levels of signaling on the decision-making ability.

The authors of [28] also investigated a learning-based power
control based on an FPC mechanism in LTE systems. They
presented a data-driven framework to model the interference
patterns in orthogonal frequency division multiple access
(OFDMA)-based networks. Based on the measurement of
these interference patterns, the proposed learning algorithms
define an optimal setting of the cell-specific power control
parameters. Therein, the authors assumed that all path loss
variables must be interpreted in a time-scale sense so that it
averages the effect of fast-fading. In other words, the uplink
PC mechanism proposed in [28] can compensate for path loss
and large-scale variations such as shadowing, but does not
adequately handle fast fading. In scenarios where these effects
are prominent, this simplification may render an inappropriate
representation of the channel conditions, restricting the success
of that uplink PC solution.

The uplink PC frameworks proposed at [27] and [28] are
based on the FPC mechanism. They employed the open-
loop power control (OLPC) paradigm, i.e., they defined the
transmit power according to large-scale channel conditions,
namely, path loss measurements. The conventional FPC solu-
tion identifies UEs based only on the path loss. This is not
entirely proper in more complex scenarios since interference
conditions are not considered while allocating the transmit
power. Consequently, this strategy usually results in high
interference situations [29]. To overcome these issues, we
perform an additional transmit power adjustment according
to the closed-loop power control (CLPC) paradigm. In this
case, we also consider the impact of transmit power commands
taken earlier in the system on the choice of the uplink PC
strategy.

To overcome these issues, in our work we perform an
additional transmit power adjustment according to the impact
of the commands taken earlier in the system. This is achieved
by means of a multi-agent RL-based power control combined
with the CLPC paradigm. In [30], the authors proposed an
uplink PC framework in a cognitive network. In this paper,
the decision-maker at each secondary UE performs a CLPC
mechanism that perceives as a useful policy the actions that
improve the signal to interference plus noise ratio (SINR)
above a given threshold. This study considers that the UEs
work in a non-cooperative manner, i.e., a secondary UE does
not have any knowledge about the primary UE PC strategy.
In our study, we investigate the impact of the cooperation
among the UEs of the network on the CLPC mechanism. The
proposed uplink PC considers a distributed strategy where the
interaction among the decision-maker entities determines the
knowledge acquisition process. In [31], the authors proposed a
strategy which learns a policy that guides transmitters to adjust
their power levels according to the CLPC paradigm under
practical constraints, such as delayed information exchange
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and incomplete channel state information (CSI). However,
the authors do not consider the beam-centric design aspects
defined in 5G NR. In our work, we develop a flexible CLPC
strategy that takes into account the coordination among mul-
tiple beams and the limitation from 3GPP standards.

In [30] and [31], the authors used a deep reinforcement
learning (DRL) method, called deep Q-network (DQN) [32].
Other studies also tackled transmit power strategies based on
DRL algorithms. In [33], it is proposed a joint subcarrier
and power allocation in a multi-cell orthogonal frequency
division multiplexing (OFDM) system. In this paper, each
BS implements a policy of resource allocation. They are the
decision-maker entities and can exchange knowledge to jointly
define a strategy of transmit power update. Zhang et al also
developed a multi-agent DRL-based PC framework in [34].
Therein, each agent adaptively controls its transmit power
based on the observed local states to minimize the interference
in a multi-user video transmission system. In [35], a DRL-
based framework is designed to solve the joint beamwidth
and power allocation problem in a mmWave communication
system. Despite the sophisticated mathematical tools, the au-
thors did not incorporate practical aspects of implementation
of 5G NR network into their solutions.

Therefore, DRL-based techniques have achieved remarkable
attention in the last years, as it can be seen in [36], [37],
[38] and references therein. Differently from conventional Q-
learning, which uses a lookup table to store the knowledge, the
DRL-based algorithms employ a deep neural network to rep-
resent this information. The lookup table is shown to be more
computationally efficient than the neural network approach.
On the other hand, the DRL-based approach has reduced mem-
ory requirements compared to the lookup table [24]. DRL-
based techniques can provide suitable learning strategies in
complex and broad-scale networks, where RL may not be able
to discover an optimal strategy in a reasonable time. However,
in this model the neural network is periodically trained based
on distinct experiences obtained during the interactions with
the environment, which can be computationally demanding
[36].

However, the system model assumptions of our work result
in a uplink PC problem where the advantages of DRL do not
become good enough to outweigh the critical disadvantage
of its use. Hence, our RL-based solution presents lower
signaling and lower computational complexity than DRL-
basedtechniques. Moreover, RL-based techniques have more
flexibility since they do not require an offline training stage,
being able to provide real-time learning. Therefore, we turn
our attention to a multi-agent RL-based solution combined
with the CLPC paradigm that is compliant with the 5G NR
technical specifications.

The main difference of the NR uplink PC framework
compared to its predecessor LTE is on the use of multiple
control loops associated with beams. Specifically, each control
loop may be associated with a specific pair of transmit and
receive beams. For instance, one electronic device may have a
beam associated with two MIMO layers (or even more) so that
the device can manage multiple control loops at the same time.
Without proper coordination among the loops, the multiple
processes produce sub-optimal power solutions [6].

To the best of our knowledge, despite the relevance of the
beam-centric power control to the management of interference
in NR networks, we have not found in the literature works
investigating this problem using RL-based algorithms. To fill
this gap, we formulate a beam-based uplink PC framework
combined with multi-agent RL to take into account the co-
ordination among multiple beams. The proposed framework
can provide a solution that enables the system to learn what
should be the most appropriate solution to the power allocation
on the uplink based on the signaling defined by the 5G NR.
We summarize the main contributions of our work as follows:

1) development of an uplink PC framework to the manage-
ment of interference in 5G NR networks compliant with
the technical specifications from 3GPP Release 15;

2) formulation of a beam-based transmit PC based on the
principles of multi-agent RL;

3) development of a signaling scheme to allow cooperation
among the entities endowed with intelligence in a NR
multi-cell system;

4) comparison of the proposed uplink PC frameworks with
two classical algorithms, namely the optimal solution
power control (OSPC) and the soft dropping power
control (SDPC), in terms of total transmit power, total
data rate, and network energy efficiency.

Notation: bold lowercase and uppercase letters represent
column vectors and matrices, respectively. (·)) and (·)� stand
for transpose and Hermitian of a matrix, respectively. Cal-
ligraphic upper-case letters denote sets, and |·| denotes set
cardinality. E{·} denotes expectation operator.

III. SYSTEM MODEL

We consider a multi-cell system with � cells. Each cell has
one BS equipped with " antennas, and serves ! UEs equipped
with # antennas each. We assume the uplink transmission,
and all cells share the same frequency band. The UEs inside a
cell are synchronized with their respective BS and periodically
measure their associated � beam pairs.

The discrete received signal model at the ;th UE of the 2th
cell is represented as

H;,2 = w�;,2H;,2f;,2%;,2G;,2︸                   ︷︷                   ︸
useful signal

+
!∑
;′ 6=;
;′=1

w�;,2H;,2f;′,2%;′,2G;′,2

︸                          ︷︷                          ︸
intra-cell interference

+
!∑
;′=1

�∑
2′ 6=2
2′=1

w�;,2H;,2f;′,2′%;′,2′G;′,2′

︸                                  ︷︷                                  ︸
inter-cell interference

+ w�;,2z︸︷︷︸
filtered noise

, (1)

where w;,2 ∈ C#×1 is the receive beamforming vector,
H;,2 ∈ C#×" is the channel matrix, f;,2 ∈ C"×1 is the
transmit beamforming vector, %;,2 is transmit power, G;,2 is
the transmitted symbol, and z is the additive white Gaussian
noise vector with zero mean and variance r2.

We assume a narrow band block-fading channel, which is
constant within a time-frequency resource block. The channel
follows a geometric model with a limited number  of scatter-
ers [39]. Each scatter contributes with a single path between
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BS and UE. Therefore, the channel matrix H;,2 ∈ C#×"
between the BS and the ;th UE of the 2th cell can be written
as

H;,2 = √d;,2
 ∑
:=1

V:vUE(q*�:,;,2 , \
*�
:,;,2)v

�
BS (q�(:,;,2 , \

�(
:,;,2), (2)

where d;,2 denotes the path loss between the BS and the ;th
UE of the 2th cell and V: is the complex gain of the :th path;
q*�
:,;,2

, q�(
:,;,2

∈ [0, 2c] are the angles of departure (AoD) at
the BS and UE, respectively; \*�

:,;,2
, \�(
:,;,2

∈ [0, c] are the
angle of arrival (AoA) at the BS and UE, respectively.

We assume uniform rectangular arrays (URAs) at the BS
and UEs. There are "E vertical antenna elements and "ℎ
horizontal antennas elements, such that " = "E"ℎ . The array
response at the BS is expressed as

vBS(q�(:,;,2 , \
�(
:,;,2) =

1
√
"

[1, . . . , 4 z
(
("E−1) 2cΛ

_
cos \�(

:,;,2
+("ℎ−1) 2cΛ

_
sin q�(

:,;,2
sin \�(

:,;,2

)
]

(3)

where Λ is the antenna element spacing, and _ is the wave-
length. The array response at UE can be written similarly.

The transmit and receive beamforming follow the so-called
hybrid structure and are defined as w;,2 = W̃u and f;,2 = F̃v,
respectively. The beamforming vectors are modeled according
to discrete Fourier transform (DFT) matrices W ∈ C#×# and
F ∈ C"×" at the receiver and transmitter, respectively. Let
us define W̃ ∈ C#×� and F̃ ∈ C"×� as the truncated receiver
and transmit beam codebooks containing the � selected beam
pairs. We assume a beam management framework to determine
the best set of � transmit-receive beam pairs, which determines
the structure of W̃ and F̃. The vectors u ∈ C�×1 and v ∈ C�×1

correspond to the dominant left and right singular vectors of
the equivalent channel, defined as Ĥ;,2 = W̃�H;,2F̃ ∈ C�×�.

We employ the beam sweeping scheme proposed in [40] to
determine the set of the most suitable transmit-receive beam
pairs. The suitability of a beam pair is determined according to
the connectivity provided by the transmitter and receiver beam
directions (each one identified by a beamforming vector). As
it can be seen in Fig. 1, the beam sweeping operation covers
a spatial area with a set of beams according to pre-specified
intervals and directions. It is carried out an exhaustive search in
a set of directions (each one identified by a beamforming vec-
tor) that covers the whole angular space. The BS sequentially
transmits synchronization signal (SS) blocks, that compose a
SS burst set, and each SS block can be mapped to a certain
angular direction.

S
S
 B

#
1

SS B#2

SS B#3

SS B#4

S
S
 B

#64

One SS Burst Set

SS B#2 SS B#3 SS B#4SS B#1 SS B#64

Fig. 1. Model of multiple time-multiplexed SS blocks within an SS burst set.
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Fig. 2. Signaling model.

We consider a signaling period, of duration )(( , divided into
two time windows, as shown in Fig. 2. The first one contains
a set of SS blocks with a duration )�( . It is used to perform
a beam sweeping procedure, that consists in the search of the
best set of � transmit-receive beam pairs. The second window
time is dedicated to data transmission using the selected beam
pairs. This period has a duration )� and each UE reports
periodically the measured channel quality indicator (CQI) to
the BS. The BS measures all possible combinations of transmit
and receive beams from the codebooks F and W, respectively,
during the transmission of the SS blocks [40]. The selected
beam pairs for :th signaling period between the BS and the
;th UE of the 2th cell are determined as the � highest values
of h1A ,1C , defined as

h1A ,1C =
‖w�

1A
H;,2,: f1C ‖
r2 , (4)

where w1A ∈ C#×1 is the 1A th column of the receive beam
codebook W and f1C is the 1C th column of the transmit beam
codebook F. We assume that the angles of departure and
arrival are constant over the beam sweeping period )�( . It
varies from 5 to 160 ms [6]. Therefore, the beam pairs remain
constant within the time period )� until the subsequent SS
block arrives, when the beam pairs are re-evaluated.

Each individual uplink transmission is carried out from a
specific antenna port, the identity of which is known by the
device [6]. Each antenna port has its own specific reference
signal, which is used by the device to estimate the CSI.

We define the SINR of the 3th antenna port associated to
the ;th UE of the 2th cell as

Γ3,;,2 =
%3,;,2 |w�;,2H;,2f;,2 |2

!∑
;′=1

�∑
2′ 6=2
2′=1

%;′,2′ |w�;,2H;,2f;′,2′ |2+r2
, (5)

where the intra-cell interference mentioned in Eq. (1) is not
considered since we assume a single active UE per time-
frequency resource in a cell.

IV. REINFORCEMENT LEARNING BACKGROUND

RL is a ML paradigm that aims to discover the best behavior
of a decision-maker entity, hereafter referred to as an agent,
in an environment to optimize a function that measures the
impact of the agent’s decisions. We model the relationship
between the agent and the environment using the concepts of
state, action, and reward [41].
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The state BC in a discrete time step C is a value (or a set of
values) that models the information that the agent has about the
environment. The action 0C is an adjustment parameter used
by the agent to interact with the environment. The reward AC is
a scalar function which indicates the immediate payoff from
taking an action 0C in a state BC [42].

Therefore, the interaction between the agent and the en-
vironment can be modeled as the transition from state BC
to BC+1, restricted to the set S of all possible states. The
transition is a consequence of an action 0C chosen in a set A
of available actions and an associated reward AC+1. Figure 3
shows a graphical representation of the interaction among
these elements.

The goal of RL is the determination of the best policy,
i.e, the most appropriate selection of actions according to the
state of the environment. More specifically, the policy maps
the perceived states of the environment to the action to be
taken by the agent in those states. The agent finds its most
desirable policy by taking into consideration the value of a
state-action value function &(BC , 0C ). This function, also called
&-function, determines the overall expected discounted reward
when starting in a state BC and selecting an action 0C .

In this work, we adopt the Q-learning algorithm, which is
an off-policy temporal difference algorithm initially proposed
in [43]. This algorithm works by updating an estimate of the
state-action value function based on the iterations of the agent
with the environment. The state-action values are updated
according to

&(BC , 0C ) =

(1 − U)&(BC , 0C ) + U
[
AC+1 + W max

0C+1∈A
&(BC+1, 0C+1)

]
,

(6)

where U ∈ [0, 1] is the learning rate and W ∈ [0, 1] is the
discount factor, which trades off the instantaneous and future
rewards.

The learning process occurs through the balance between
exploration, i.e., the sample of unseen parts of the state-action
space, and exploitation of the accumulated knowledge [42].
We consider an adaptive n-greedy algorithm strategy. Every
time an agent takes an action 0C , it has a probability nC to be
random (exploration) and a probability 1−nC to select an action
0C based on previous experience (exploitation). The value of
nC is gradually reduced over time from an initial value nmax
until it reaches a minimum value nmin.

The agent has to store the state-action values to be able
to learn from the interactions with the environment. There are
different mechanisms to represent these values, such as lookup
tables or neural networks. For a more in-depth discussion on

Agent

Environment

action

at

state

s t+1

reward

r t

Fig. 3. Reinforcement learning interaction between elements.

this topic, we refer the interested reader to [25]. In our work,
we build a table Q ∈ R |S |×|A | to store the &(BC , 0C ) val-
ues. This mechanism has high requirements of computational
memory in discrete state and action sets, but does not require
any complex computational operation of training to store the
acquired knowledge.

V. PROPOSED UPLINK POWER CONTROL FRAMEWORK

In this section, we present the proposed beam-based uplink
PC framework using multi-agent RL which is compliant to the
5G NR specifications [17], [18], [19], [20], [21], [22], [23].
The proposed approach consists of a joint power optimization
of multiple antenna ports per UE using an RL-based technique
since we consider multiple-antenna transmission/reception.

A. Uplink Power Control in 5G NR

NR uplink PC is the set of procedures that manage the trans-
mit power of uplink physical channels, namely the physical
uplink shared channel (PUSCH), the physical uplink control
channel (PUCCH), and the physical random-access channel
(PRACH), to guarantee suitable communication. We seek to
determine the minimum transmit signal power necessary for
appropriate decoding of the information conveyed through
the physical channel. Furthermore, the uplink PC procedures
must also limit the interference to other uplink transmissions.
The transmit power control expressions of the uplink physical
channels are very similar to each other. Their expressions
are thoroughly detailed in [21]. The PUSCH is used for the
transmission of uplink shared channel (ULSCH) data and
control information. Thus, compared to PRACH and PUCCH,
it presents a relation between power control and link adap-
tation that allows more flexibility. Consequently, the power
control of the PUSCH has a greater scope of mechanisms and
encompasses what can be done in PUCCH and PRACH.

Therefore, the uplink PC framework developed in our work
considers the PUSCH expression Eq. (7) as the baseline power
control. It can be concisely written, in dBm scale, as

%PUSCH = min{%CMAX, %0(g) + i(g)Υ(@) +
10 log10(2`Δ'�) + Δ) � + X(a)},

(7)

where
• %PUSCH is the PUSCH transmit power;
• %CMAX is the maximum allowed transmit power per

carrier;
• %0(g) is the target received power;
• i(g) is the fractional path loss compensation factor;
• g determines the transmission type, a network config-

urable parameter;
• Υ(@) is the estimation of the uplink path loss;
• @ is the reference signal (RS) index;
• ` is the subcarrier spacing parameter;
• Δ'� is the bandwidth of the resource assignment;
• Δ) � models the required received power according to

number of resource bits per resource element which also
depends on the modulation scheme and channel coding
rates;

• X(a) is the power adjustment due to the closed loop power
control;
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• a determines the closed loop process index.
Equation (7) indicates that the PUSCH power control is

composed of OLPC and CLPC mechanisms. In the OLPC, the
UE transmit power is adjusted according to estimates of the
uplink path loss based on downlink measurements, as it can be
seen by the expression %0(g)+i(g) ·Υ(@). The transmit power
is adjusted to achieve the target %0(g), which is a configurable
network parameter regulated to provide a target data rate,
given the noise and interference levels at the receiver. The UE
estimates the downlink path loss Υ(g) using the RS index g for
the active downlink. A UE does not simultaneously maintain
more than four path loss estimates per transmission [21].

The parameter i(g) determines the compensation level of
the path loss Υ(@). The full path loss compensation, which
is done when we assume i(g) = 1, ensures that the received
SINR matches the requirement for the modulation and coding
scheme (MCS) selected by the network, assuming that the
UE transmit power does not reach its maximum value. On
the other hand, a fractional path loss compensation, which
arises when 0 < i(g) < 1, requires a lower transmit power,
implying less interference to the other cells. However, the
received power, and consequently, the SINR, decreases as the
path loss increases. The data rate is also reduced to compensate
this effect by switching to a lower MCS. The benefit of
fractional path loss compensation is the reduced interference
to neighbor cells. However, this benefit comes at the price
of more significant variations in the service quality, with
reduced data rate availability for UEs closer to the cell border.
In this work, we assume a full path loss compensation to
ensure service quality stability, requiring a CLPC mechanism
to manage the uplink interference.

The transmit power should be proportional to the band-
width assigned for the transmission, as indicated by the term
10 · log10(2` · Δ'�) in Eq. (7). The transmit power must
be proportional to the size of the resource block, where the
subcarrier width is defined as Δ 5 = 2` · 15 kHz. We assume a
fixed bandwidth for the PUSCH transmission. Therefore, this
term can be omitted from the power control expression.

The term Δ) � models the impact of the number of bits
per resource element and channel coding rates on the transmit
power. This model is expressed as

Δ) � = 10 log(21.25[ − 1) + 10 log(r), (8)

where [ is the number of information bits per resource
element; r models the impact of data transmission on PUSCH,
and r = 1 when the PUSCH includes ULSCH data. In our
work, we assume that the PUSCH received power is matched
to a certain MCS given by the selected value of %0(g). In this
case, according to [1], we set Δ) � to zero.

In the CLPC, the UE transmit power is adjusted according
to power control commands provided by the network. This
regulation is determined from prior network measurements
of the received uplink power [6]. The term X(a) defines the
power control command and in the closed loop solution.
Such commands are carried out in the transmit power control
(TPC) field within uplink scheduling grants (downlink control
information (DCI) formats 0 − 0, 0 − 1, and 2 − 2 [21]). Each
power control commands consists of 2 bits corresponding to
four different steps: −1 dB, 0 dB, +1 dB, and +3 dB. These

steps are associated with TPC command field values 0, 1, 2
and 3, respectively. Each command specifies the value in dB
that a UE should add to its current transmit power.

The main extension of NR compared to LTE is the possi-
bility for a beam-based power control. The parameters g, @,
and a in Eq. (7) are associated with beam pairs for uplink
PC. For instance, the uplink path loss estimate Υ(@) should
reflect the path loss of the uplink beam pair @ to be used for
the PUSCH transmission. The network uses a set of downlink
reference signals (CSI-RS, SS block) to estimate the path loss
for a specific value of @, and each UE is limited to monitor up
to @max = 4 parallel path loss estimation processes [21]. The
network also provides a mapping from the possible sounding
reference signals resource indicator (SRI) values provided
in the scheduling grant to the different values of @. After
a beam management process to determine the beam pairs,
and consequently, the corresponding antenna ports, the path
loss estimate is then used in the power control expression.
Consequently, the parameters @ and a are directly associated
to the antenna port index 3.

Therefore, based on the assumptions previously described,
the transmit power of the 3th antenna port of the ;th UE in
the 2th cell is represented as a simplification of Eq. (7) and
can be written as
%PUSCH
3,;,2 = min{%CMAX, %0(g) + i;,2(g)Υ;,2(3) + X;,2(3)}.

(9)
For the reader interested in more details, please refer to [17],

[18], [19], [20], [21], [22], [23] and references therein.

B. RL-Based Uplink PC Design
In our framework, each cell regards its BS as an agent, and

the remaining of the system (other BSs, UEs, and ULSCH)
represents the environment. The behavior of the Q-learning
algorithm depends not only on the BS actions, but also on the
actions taken by neighboring BSs, since all cells are assumed
to operate at the same frequency and therefore suffer from
inter-cell interference. In other words, there is states, actions,
and rewards of different cells that are coupled, and influence
one another. This is the main reason for considering a multi-
agent RL approach in this work.

1) State Mapping: The state of the BS of the 2th cell
is a tuple BC ,2 = {%1,2 , · · · , %�,2} of powers associated
with each antenna port. The index ; is omitted for notation
simplicity, since only one UE per resource block is considered.
These powers are modeled as discrete values in dBm and are
limited to minimum and maximum values, i.e., BC ,2 ∈ (2 =
{{%min

1,2 , · · · , %
min
�,2
}, · · · , {%max

1,2 , · · · , %
max
�,2
}}. The power limits

for the 3th antenna port are defined according to

%min
3,2 = %SINR

3,2 − i2(g)Υ2(3), (10)

%max
3,2 = %CMAX − i2(g)Υ2(3), (11)

where the power %SINR
3,2

assures the minimum SINR, Γmin
3,2

.
2) Action Mapping: The action of the 2th agent is modeled

as TPC commands 02 = {X1, · · · , X�} sent to the UE to update
the transmit power of the antenna ports. Each TPC command
X3 is limited to the set {−1, 0, +1, +3} defined in [21, Table
7.1.1-1]. In our model, each BS sends the commands to the
associated UE and the transmit power of all antenna ports
{%1,2 , · · · , , %�,2} are updated simultaneously.
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3) Reward Mapping: We consider a reward function based
on a performance indicator of the network to determine the
effects of the variation of the power level of the antenna ports.
Note that the reward will be influenced by the SINR and by
the level of cooperation between neighbor cells. The reward
function is a convex sum of the cell’s data rates, and can be
written as

AC ,2 = d2
!∑
;=1

�∑
3=1

Ω log2(1 + Γ3,;,2) +

�∑
2′=1
2′ 6=2

d2′

(
!∑
;=1

�∑
3=1

Ω log2(1 + Γ3,;,;′)

)
,

(12)

where Ω is the resource block’s bandwidth and d2 ∈ [0, 1]
is a weight factor that determines how much the data rate of
the 2th cell impacts the reward. These values are also shared
between cells and they sum up one, i.e.,

∑�
2=0 d2 = 1.

This expression represents a weighted average of the sys-
tem’s capacity taking into account all cells. In turn, the weights
of this average represent the degree of importance that the
agent considers for a given cell. The first term of Eq. (12)
represents the performance indicator parameter related to the
relationship between UEs and BS of a given cell. In other
words, it describes the direct impact of the entity endowed with
intelligence (the BS is the decision maker) on the associated
UEs in the cell where it is the main entity. The second term
of Eq. (12) measures the impact of the agent decision on the
data rate of the other cells of the network. Therefore, a given
action could be measured as beneficial if the data rate of the
other cell increases. Thus, strategies that result in a reduction
of the multi-user interference become interesting to the agents,
even if the data rate of its cell remains the same or presents
a reduction.

After an initial parameter configuration to define the power
limits described by Eqs. (10) and (11), the process of taking
actions and calculating rewards is carried out. The mapping be-
tween the states, actions and rewards is initially performed in
an exploratory fashion. This means the BSs and UEs exchange
commands and rewards in order to learn the relationship
between the set of actions A and of states S to the observed
rewards described by Eq. (6). Once this mapping is completed,
the BS exploits it to choose the appropriate TPC command and
send it to each UE. If any change in the scenario occurs, the
mapping is updated, and another solution is provided. Such
update requires minimal signaling.

We assume an adaptive n-greedy algorithm where the value
of n is gradually reduced over discrete time steps C according
to

nC =
nmax

nmax + bC
, (13)

where nmax is the initial exploration rate, and b is a fixed
parameter that guarantees a given value to n in a defined time
step C. In the beginning of the each experiment, the agent
explores intensely the state-action space and updates its matrix
[Q]BC ,0C = &(BC , 0C ). In the end, the probability of exploitation
is higher than a minimum predetermined threshold, e.g., 90%.

4) RL-Based Signaling Scheme: Figure 4 represents the
signaling scheme of the proposed multi-agent RL-based uplink
PC framework when operating in a multi-cell scenario. Each

cell has one BS that serves one UE per resource. At the
step (1), each cell 2 defines the dimensions and the initial
assessments of the matrix &2 ∈ R |S2 |× |A2 | , which stores
the state-action values &(B2C , 02C ) resultant of the interactions
of the 2th BS with the environment. In our model, we
initialize the system considering matrix &2 with all its entries
equal to zero. That is, the system starts its learning process
completely dummy, without any indication of how to proceed.
We deliberately chose this condition to show that the algo-
rithm is capable of learning and its results are very close to
the optimal solution, as it can be seen in the performance
evaluation in Section VI. In addition, this behavior shows
that the algorithm is capable of learning in real time, even
starting from a condition without any knowledge. This shows
its great applicability in real systems, where online learning is
a particularly important feature.

As a initial step, we need to define the spaces of states and
actions, i.e., the sets S2 and A2 , respectively. The cardinality
of the set of actions A2 is a function of the number of TPC
commands and antenna ports, since each action 02C is defined
as a set of TPC commands sent to the antenna ports. Thus, it
can be written as

|A2 |= ]� (14)

where ] is the number of TPC commands.
The cardinality of the set of states S2 is defined according

to the number of power intervals and the number of antenna
ports. The number of power intervals is a function of the step
size among transmit power levels and the power limits %min

3,2

and %max
3,2

. Thus, the cardinality is given by

|S2 |=
(
%max
3,2
− %min

3,2

j

)�
(15)

where j is the size of the power step.
At the step (2), each BS sends a set of TPC commands to the

associated UE. We assume uplink scheduling grant according
to the DCI format 0 − 1, where there are 2 bits reserved
to adjust PUSCH transmission power [6]. We consider the
format 0−1 since it supports multi-antenna fields, like number
of antenna ports, SRI, and sounding reference signals (SRS)
request. These values are defined according to the n-greedy
algorithm. Hence, each agent determines an action modeled
by the tuple 02 = {X1, · · · , X�} which defines the update of
the UEs’ transmit power levels. At the step (3), each BS
observes the new power of its associated UE according to
the SRS transmission. Then, at step (4), the BSs share their
uplink measurements based on the SRS transmissions of the
associated UE. Based on these measurements, at step (5), each
BS calculates the reward associated with the action taken at
step (2). Then, each BS updates the mapping between the
spaces of actions and rewards at step (6). Finally, at step
(7), based on the updated mapping, each BS determines the
next TPC commands, i.e., the next update of the power of the
associated UE.

In the following, Algorithm 1 summarizes the main steps
of the proposed RL-based framework. These instructions are
carried out independently by each agent. The main loop
(instructions between lines 3 and 10) determines the sequential
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Power Command

Fig. 4. Representation of the proposed uplink PC framework considering reception/transmission of measurement/information from/to another BS.

selection of actions according to the n-greedy policy. The in-
struction with the greatest computational complexity is defined
at line 9, as is requires the search for the maximum value in the
matrix &2 . We define the stop condition when C is equal to the
number of iterations ) . This approach is also considered in the
comparison algorithms. Thus, the computational complexity of
the proposed framework based on the pseudo-code Algorithm
1 is $()� |S2 | |A2 |). For more details see Appendix A.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
uplink PC framework. We consider a simulation scenario with
three cells, where each cell has one BS and one associated UE,
as can be seen in Fig. 5. We also consider a scenario with two
antenna ports. Each UE moves along a linear track towards
the cell border at a constant speed and a random direction.
The cells share the same frequency band composed of 12 sub-
carriers, where orthogonal uplink transmission is assumed. The
subcarrier spacing is 120 kHz, since we assumed a numerology
based on ` = 3, and the frequency carrier is 28 GHz. In this
numerology, one time slot has a duration of 0.125ms. In this
work, a time slot is also referred to as an iteration. The path
loss follows the urban macro (UMa)-non-line of sight (NLOS)
model [44, Table 7.4.1-1]. The shadowing is modeled as log-
normal distributed with a standard deviation of 4 dB. The noise

Algorithm 1 Proposed RL-based power control.
1: initialize C = 0;
2: sort initial power levels BC ,2 = {%1,2 , · · · , %�,2} ∈ SB;
3: while stop condition not reached do
4: sort an uniform random number 4 ∈ [0, 1];
5: determine nC according to Eq. (13);
6: if (4 < nC ) or (C = 0) then
7: select randomly an action 0C ,2 = {X1, · · · , X�} ∈ A2;
8: else
9: select the action 0C ,2 = {X1, · · · , X�} ∈ A2 with the

maximum &2(BC ,2 , 0C ,2);
10: end if
11: compute the transmit power update defined by the

action 0C ,2;
12: verify if the antenna port power limits %min

3,2
and %max

3,2

are respected;
13: execute the transmit power updates;
14: calculate the associated reward AC ,2(BC ,2 , 0C ,2 , BC+1,2) ac-

cording to Eq. (12);
15: update the matrix &2 with the &2(BC ,2 , 0C ,2) value

according to Eq. (6);
16: C = C + 1;
17: end while
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TABLE I
GENERAL SIMULATION PARAMETERS.

Parameter Value

Inter site distance 200 m
Min. dist. BS-UE (2D) 25 m
Angle sector 60◦
BS height 15 m
UE height 1.5 m
UE track linear
UE speed 5 km/h
BS antenna model omnidirectional
BS antennas 8 × 8
UE antenna model omnidirectional
UE antennas 2 × 2
Max. transmit power per carrier 24 dBm
Carrier frequency 28 GHz
Bandwidth 1.44 MHz
Number of subcarriers 12
Subcarrier spacing 120 kHz
Number of subframes 10
Number of symbols 14
Azimuth angle range [−60◦, 60◦]
Elevation angle range [60◦, 120◦]
Number of paths 10
Simulation rounds 100

power is modeled as 10 log10(290 · 10−23 ·Ω) dBm. The main
simulation parameters are listed in Table I.

We assume a UE power class 3, i.e., the maximum uplink
transmit power per carrier is defined as %CMAX = 24 dBm [45].
Therefore, each antenna port can assume one value from a
total of 25 discrete power levels, separated in steps of 1
dBm. The state of the agent of the BS at the 2th cell can
be written as BC ,2 ∈ (2 = {{%min

1,2 , %
min
2,2 }, · · · , {%

max
1,2 , %

max
2,2 }}.

The maximum and minimum power limits are described by
Eqs. (10) and (11). Notice that the sum of the powers of
the antenna ports cannot exceed the maximum power %CMAX

UE1

BS1

Cell 1 UE3

BS3

Cell 3

UE2 BS2

Cell 2

Fig. 5. Simulation scenario.

for each UE. The Q-learning algorithm determines the best
policy for adjusting the transmit power of each antenna port,
defined by {X1, X2}. Recall that we consider TPC in the set
{−1, 0, +1, +3} [21, Table 7.1.1-1].

Therefore, each cell implies an environment that has a total
of 252 = 625 states and each agent has 42 = 16 actions. We
assume an adaptive n-greedy algorithm where the value of n
is gradually reduced over discrete time steps C according to
Eq. (13). The initial exploration rate nmax is defined as 0.95,
and b is a fixed parameter that guarantees nC = 0.50 when
C = 2, 000. In the beginning of the each experiment, the agent
explores intensely the state-action space and updates its Q-
table. In the end, the probability of exploitation is higher than
90%. We summarize the Q-learning parameters in Table II.

We evaluate the proposed uplink PC solution in terms of (i)
total uplink transmit power, (ii) total data rate, and (ii) network
energy efficiency. The data rate of the 2th cell, based on the
Shannon’s capacity formula, can be expressed as

DR2 =
�∑
3=1

Ω log2(1 + Γ3,2), (16)

where Γ3,2 corresponds to Γ3,;,2 since each cell has only one
UE.

The network energy efficiency is the ratio between the total
data rate and the total uplink transmit power. It can be written
as

EE =

�∑
2=1

�∑
3=1

Ω log2(1 + Γ3,2)

�∑
2=1

�∑
3=1

%3,2

, (17)

where %3,2 is the %PUSCH
3,2

associated with the UE from the 2th
cell and the 3th antenna port updated according to Eq. (9).

A. Evaluation of the Proposed RL-Based Uplink PC Design

Initially, we evaluate the behavior of the proposed RL-based
uplink PC design. Our analysis focus on the impact of the
reward function in the determination of the power management
policy. According to Eq.(12), the reward function is defined
as the sum of the data rate of each cell DR2 weighted by
the design parameter d2 . In order to reduce the degree of
freedom in our problem, we re-write the reward function as
a convex sum of data rates, where the first term contains
the data rate of the cell whose agent directly manages the
transmit power and the second term accounts the data rate of
the other cells in the system. This adaptation aims to simplify
the determination of the best set of design parameters and to
reduce the sensitivity of the learning system. Thus, the reward

TABLE II
MACHINE LEARNING PARAMETERS.

Parameter Value

Number of iterations 21,000
Discount factor (W) 0.10
Learning rate (U) 0.20
Initial exploration rate (nmax) 0.95
Number of states 625
Number of actions 16
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functions of the agents in our simulation model can be written
as

AC ,2 = d
�∑
3=1

Ω log2(1 + Γ3,2) + (1 − d)
�∑
2′=1
2′ 6=2

�∑
3=1

Ω log2(1 + Γ3,2′),

(18)

where d is the design parameter that regulates how the agent
behavior is impacted by the gains or losses of the data rates
of the other cells. Moreover, it also determines the level of
cooperation among the agents in the learning process.

Figure 6a examines the total transmit power (in dBm) as
a function of the number of iterations. We apply a simple
moving averaging (SMA) with a window of 500 iterations
to smooth the curves. All BSs operate their agents simulta-
neously according to the reward functions described by Eq.
(18), a simplification from Eq. (12). The proposed uplink PC
framework decreases the total transmission power over the
iterations in comparison with the initial level from 1 dBm to 2
dBm, varying according to the value of the design parameter d.
Therefore, the learning process resulting from the interaction
with the system promotes different energy efficient resource
management policies.

The behavior of the total transmit power varies according
to the value of the design parameter d. On the one hand,
when d = 1.0, the reward expression considers only the data
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Fig. 6. Evaluation of the proposed RL-based uplink PC design considering
different values of the design parameter d.

rate of the cell where the BS is located. According to Q-
learning principles, the dynamic of iteration between agent
and environment is thought to maximize the long term reward.
Consequently, the algorithm attempts to maximize the data rate
of each cell. Based on Eq. (5), the transmit power is the only
parameter controlled by the BS able to modify the SINR and,
consequently the data rate. Therefore, the algorithm increases
the power of all UEs indistinctly. Each UE updates its power
autonomously, without any explicit observation of how its
behavior affects the remaining of the system. Consequently,
this parameter configuration reaches the highest power levels,
namely 23 dBm. On the other hand, when d < 1.0, each agent
seeks to maximize the weighted sum of the data rates, i.e., the
algorithm also considers as advantageous an improvement in
the data rate of the other cells. In that case, the uplink power
stabilizes at lower levels. In comparison with d = 1.0, there is
a reduction of 1 dBm in the total transmit power transmission
when d = 0.8. This is the most efficient parameter setting
considering only the reduction of transmit power. The design
parameter d ≤ 0.6 results in the most cooperative behavior of
the system, which efficiently reduces the interference, despite
the small increment of the transmit power.

Figure 6b shows the total data rate (in Mbps) as a function
of the number of iterations. The behavior observed when
d = 1.0 promotes a high interference scenario, which reduces
the SINR levels and jeopardizes the total data rate. The
cooperation among agents, even if reduced, is capable of
significantly improving the system conditions. The cooperation
level parameter d = 0.9 promotes an enhancement of 15%
of the total data rate in comparison with d = 1. The best
performance of the system in terms of total rate is seen
when d = 0.6, which increases in 20% the total data rate
in comparison with the worst case.

Figure 7 indicates the average network energy efficiency in
the last 2, 000 iterations achieved by the proposed RL-based
uplink PC considering different values of d, i.e., different
levels of cooperation among agents. We observe higher levels
of the network energy efficiency when d < 1. Considering
this parameter setting, the proposed uplink PC framework
reduces the transmit power and increases the total data rate.
However, it requires an exchange of information between cells.
That is, the enhancement of the network efficiency in at least
20% comes at the cost of a signaling exchange among BSs.
The network energy efficiency gains with d = 0.60 are 40%
higher than when d = 1. Therefore, the design parameter
d = 0.60 achieves the highest network energy efficiency in
the considered scenario.

Note that the determination of the most suitable design
parameter value d to obtain the highest levels of network
energy efficiency depends on the simulation scenario, being
predominant the UE’s location in the cell. On one hand, UEs
located at the cell’s edge experience high inter-cellular inter-
ference. In this case, lower rates of d represent the best choice,
as this configuration seeks to balance reward’s objectives more
cooperatively, leading to lower levels of interference. On the
other hand, UEs close to the BS are less affected. In this
case, higher sigma rates can be chosen without the negative
effects described above, since the increase in power does not
significantly increase the levels of inter-cellular interference.
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We have performed an exhaustive search for the parameter d
to determine its behavior in a given scenario and to validate the
proposed technique. However, from a practical point of view,
the development of an adaptive strategy for this parameter
would be worth to investigate. This is one of our prospects
for future works.
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Fig. 7. Network energy efficiency achieved by the proposed RL-based uplink
PC considering different values of the design parameter of cooperation among
agents d.

B. Comparison with Classical Algorithms

In the following, we compare the performance of the
proposed uplink PC framework with two classical solutions
found in the literature.

1) Optimal Solution: the authors of [46] extended the
results obtained in [47] to the power minimization problem
with SINR constraints and fixed transmit-receive filters. This
problem can be formally written as

max min
3,2

Γ3,2

Γ
Target
3,2

s.t
�∑
2=1

�∑
3=1

%3,2 ≤ %CMAX

(19)

where ΓTarget
3,2

is the SINR target at the 3th antenna port of
the UE at the 2th cell. In our simulations, the highest feasible
SINR target is defined as ΓTarget

3, 2 = Γmax
3, 2 = 6 dB

The authors of the aforementioned articles prove that the
optimal power allocation at the 2th cell that maximizes the
SINRs is provided by the dominant eigenvector of the matrix
Λ2 , which can be written as

Λ2 =


D2Ψ
)
2 D2fff

1
%CMAX

1)D2Ψ)2
1

%CMAX
1)D2fff

 (20)

where D2 = diag

{
Γ

Target
1,2

‖w�2 H2f2 ‖2
,

Γ
Target
2,2

‖w�2 H2f2 ‖2

}
, fff is a vector

of noise powers on all antenna ports, 1 is a vector of ones with
appropriate dimension. The coupling matrix Ψ2 is defined as

[Ψ2]1A ,1C =

{
‖w�

1A
H;,2,: f1C ‖2, if 1C 6= 1A .

0, otherwise.
(21)

Algorithm 2 Optimal solution power control.
1: initialize C = 0;
2: define SINR targets of all antenna ports in all cells Γtarget

3,2
;

3: while stop condition not reached do
4: define extended coupling matrix Λ2;
5: perform the eigendecomposition of the extended cou-

pling matrix Λ2;
6: verify if the antenna port power limits %min

3,2
and %max

3,2

are respected;
7: execute the transmit power updates;
8: C = C + 1;
9: end while

Algorithm 2 summarizes the main steps of the OSPC
algorithm. These instructions are carried out independently by
each agent. The main loop (instructions between lines 3 and 9)
determines the sequential selection of actions according to the
eigen system discussed previously. The computational com-
plexity of this strategy based on the pseudo-code Algorithm 2
is $()��2"#) + $()��3). For more details see Appendix
B.

2) Soft Dropping Power Control: initially proposed in [48],
it is an iterative power allocation algorithm which promotes
a self-regulation of the target SINR according to the transmit
power and channel conditions. The transmit power %PUSCH

3,2
(C +

1) associated with the UE from the 2th cell and the 3th antenna
port at the (C + 1)th iteration is updated according

%PUSCH
3,2 (C + 1) = %PUSCH

3,2 (C) + Z[ΓTarget
3,2

(C) − Γ3,2(C)], (22)

where ΓTarget
3,2

is a power-dependent target SINR updated ac-
cording to

Γ
Target
3,2

=

min

{
max

{(
Γmax
3,2
− Γmin

3,2

%min
3,2
− %max

3,2

)
%PUSCH
3,2 (C) + Γmin

3,2 , Γ
min
3,2

}
, Γmax
3,2

}
,

(23)

where Γmin
3,2

and Γmax
3,2

are lower and upper limits, respectively,
such that ΓTarget

3,2
∈ [Γmin

3,2
, Γmax
3,2

]. The feasible SINR limits are
defined through simulations as ΓMin

3,2
= 0 dB and ΓMax

3,82
= 6 dB.

Furthermore, aiming at the convergence of the algorithm, we
define Z = (1 − V)−1 [49], [50], where V is defined as

V =
log10(Γ̂Min

3,2
/Γ̂Max
3,2

)

log10(%̂Max
3,2

/%̂Min
3,2

)
(24)

where Γ̂Min
3,2

and Γ̂Max
3,2

are the minimum and the maximum
SINR in linear scale, respectively; %̂Min

3,2
and %̂Max

3,2
denote the

minimum and the maximum transmit power in linear scale,
respectively. We randomly sort the initial power at each Monte
Carlo simulation, i.e., %PUSCH

3,2
(0) ∈ [%min

3,2
, %max

3,2
].

Algorithm 3 summarizes the main steps of the SDPC
algorithm. These instructions are carried out independently
by each agent. The computational complexity of this strategy
based on the pseudo-code Algorithm 2 is $()��). For more
details see Appendix C.

Figure 8a shows the behavior total transmit power (in dBm)
as a function of the number of iterations of the proposed
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Algorithm 3 Soft dropping power control.
1: initialize C = 0;
2: define the initial transmit power for each antenna port in

each cell;
3: while stop condition not reached do
4: calculate the target SINR Γ

target
2,3

according to Eq. (23);
5: update the transmit power according to Eq.(22);
6: verify if the antenna port power limits %min

3,2
and %max

3,2

are respected;
7: execute the transmit power updates;
8: C = C + 1;
9: end while

RL-based uplink PC framework, hereafter referred to as RL-
based power control (RLPC), compared with the two classical
solutions. In the initial iterations, the RLPC presents the
highest total transmit power. It exceeds the levels obtained
by SDPC by 0.5 dBm. However, this disadvantage is reversed
as the agents interact with the environment and the knowledge
acquired is used in the decision making. At the end of
the simulation, the RLPC outperforms the SDPC, with a
significant reduction of the total transmit power (1.5 dBm), and
its transmit power levels approach that observed with OSPC.

Figure 8b shows the total data rate (in Mbps) as a function
of the number of iterations. The proposed RLPC has a slower
convergence, but finds a power solution able to reduce the in-
terference and increase the SINR. Consequently, we observe a
continuous increment of the total data rate, that enhances 20%
compared with SDPC and approaches the optimal solution.

Figure 8c depicts the behavior of the network energy
efficiency as a function of the number of iterations. The SDPC
has a static behavior, i.e., it is not able to learn new strategies
from the interaction with the environment. The RLPC provides
a self-exploratory energy-efficient solution which enhances its
network energy efficient approximately 95%, achieving 75%
of the performance of the optimal solution.

The RLPC has computational complexity higher than that of
SDPC, since it requires the determination of the largest value
of the & table, while the SDPC only requires a comparison of
two scalar values. The computational disadvantage of RLPC is
compensated by the significant reduction in the transmit power
and the substantial increase in the data rate in comparison with
SDPC. OLPC obtains the best results in all analyzed parameter
settings. This occurs at the expense of a high computational
cost resulting from the self-decomposition operation involving
a high-dimensional matrix. In addition, OLPC requires an
intense signaling, since the channel matrix, precoders, de-
coders and SINR targets must be informed at each iteration.
The RLPC algorithm requires a much lower signaling level,
requiring only the parameter d (on the beginning of the
process) and the data rate. We summarize in Table III the
main comparison aspects of the algorithms under analysis.

VII. CONCLUSIONS

The proposed uplink PC framework based on multi-agent
RL for a 5G NR network provides a self-exploratory solution.
It enabled the system to learn the power control to fulfill
the enhanced throughput on the uplink channel under neigh-
bor cell interference mitigation. Simulation results show that
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Fig. 8. Comparison of the proposed RL-based uplink PC design with classical
algorithms.

TABLE III
COMPARISON UPLINK POWER CONTROL ALGORITHMS.

Algorithm Signaling Complexity

SDPC Low Low
RLPC Low High
OSPC High High

the proposed uplink PC framework provides near-optimum
performance in terms of total transmit power, total data
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rate, and network energy efficiency. The proposed signaling
scheme provides a power control strategy that allows the
cooperation among BSs to mitigate inter-cell interference. As a
consequence, the proposed framework overcomes SDPC with
similar signaling levels.

APPENDIX A
COMPUTATIONAL COMPLEXITY OF THE RLPC

ALGORITHM

Line 2 in Algorithm 1 defines the initialization of power
levels of all � antenna ports in each cell. These powers
are modeled as discrete values and are limited to minimum
and maximum values (%min

3,2
and %max

3,2
) determined by Eqs.

(10) and (11), respectively. The number of possible power
values is a function of the step size j among transmit power
levels and the power limits. Thus, initialization of power levels
requires the sort of � values in a space of possible states
(powers) with cardinality given by Eq. (15). A loop of �
iterations is required to initialize the power levels on all cells.
Therefore, the computational complexity related to this line

is $
(
�∑
2=1
|S2 |

)
= $

©«
�∑
2=1

(
%max
3,2
− %min

3,2

j

)�ª®¬. For simplification

purposes, we consider the space of states in all cells with the

same size |S2 |=
(
%max
3,2
− %min

3,2

j

)�
. Then, the computational

complexity becomes $(� |S2 |).
The main loop involves the commands between lines 4 and

16. This loop is executed ) times until the stop condition is
determined. Line 4 determines the sort of a random number.
This operation has complexity �$(1) = $(�), since it is
repeated by all agents. In the following, line 5 requires the
calculation of the learning rate nC according to Eq. (12). This
operation involves the calculation of scalar values, which has
complexity �$(1) = $(�). In one hand, if the condition
(4 < nC ) or (C = 0) is true, it is sorted a random set of
actions from the space of action, as defined in line 7, which

has computational complexity $

(
�∑
2=1
|A2 |

)
= $(�]�) (] is

the number of TPC commands). It is assumed that all agents
have the same space of actions. On the other hand, if the
condition (4 < nC ) or (C = 0) is false, we select an action based
on the evaluation of the maximum element of row &(BC ,2 , :).
Therefore, the operation defined in line 9 has computational
complexity �$(|A2 |= $(� |A2)) = $(�]�).

Line 11 defines the computation of transmit power update
of the antenna ports in all cells. Thus, the computational com-
plexity of this operation is ��$(1) = $(��). The verification
of the antenna port power limits in line 12 has computational
complexity �$(�) = $(��) and the execution of transmit
power updates in line 13 has complexity �$(�) = $(��).
The calculation of the reward associated to the performed
actions has computational complexity �$(�) = $(��).
Finally, the update of the matrix & defined in line 15 has
computational complexity �$(|S2 | |A2 |) = $(� |S2 | |A2 |).

The computational complexity of the proposed RL-based
uplink PC framework based on the analyzed pseudo-code is
$(� |S2 |) + )($(�) + $(|A2 |) + $(��) + $(|S2 | |A2 |)) →
$()� |S2 | |A2 |).

APPENDIX B
COMPUTATIONAL COMPLEXITY OF THE OSPC

ALGORITHM

Line 2 in Algorithm 2 defines the SINR targets of all �
antenna ports in all � cells. This command has computational
complexity �� · $(1) = $(��). The next command at line
4 specifies the extended coupling matrix of each cell, which
requires the operations defined at Eq. (20) and Eq.(21). The
determination of the coupling matrix Ψ2 at Eq.(21) requires the
manipulation of beamforming vectors and channel matrices,
namely w1A ∈ C#×1, f1C ∈ C"×1, and H ∈ C#×" , respec-
tively. The operation is repeated �2 times since it is created a
squared matrix with dimension �×�. Thus, the computational
complexity is �2 · ($(#) + $(#") + $(")) → $(�2#) +
$(�2"#) +$(�2")→ $(�2"#), where " and # are the
number of receive and transmit antennas, respectively. Besides
the coupling matrix Ψ2 , the definition of the extended coupling
matrix Λ2 also requires the specification of the auxiliary
matrix D2 . This matrix requires the computational of the
norm of the vector w�1AHf1C to determine the � elements of
its main diagonal. Therefore, it has computational complexity
� ·($(#)+$("#)+$("))→ $(�#)+$(�"#)+$(�")→
$(�"#).

The extended coupling matrix Λ2 is composed by different
blocks of matrices. The determination of D2Ψ)2 has com-
putational complexity $(�2), since it requires the multipli-
cation of matrices of dimension � × �. The determination
of

1
%PCMAX

1)D2Ψ)2 has computational complexity $(�2)
since it involves the multiplication of arrays with dimensions
� × 1 and � × �. The determination of D2f also has
computational complexity $(�2) since it involves again the
multiplication of arrays with dimensions � × 1 and � × �.

The determination of
1

%PCMAX
1)D2f has computational com-

plexity $(�2) since it involves the multiplication of arrays
with dimensions � × 1 and � × �. The composition of
the extended coupling matrix has computational complexity
$(�2)+$(�2)+$(�2)+$(�2)→ $(�2). Thus, the definition
of the extended coupling matrix has computational complexity
) · � · $(�2"#) + $(�"#) + $(�2) → $()��2"#) +
$()��"#) + $(�)�2) → $()��2"#), where ) is the
total number of iterations.

In addition, line 5 requires the eigendecomposition of the
extended coupling matrix Λ2 , so the computational complexity
is ) · � · $((� + 1)3) = $()��3). The verification of
the power limits at line 6 has computational complexity
) · � · � ·$(1) = $()��). The implementation of the power
commands has computational complexity ) · � · � · $(1) =
$()��). Thus, the total number of operations in big O
notation is $(��) +$()��2"#) +$()��3) +$(�)�)→
$()��2"#) + $()��3).

APPENDIX C
COMPUTATIONAL COMPLEXITY OF THE SDPC

ALGORITHM

Line 2 in Algorithm 3 defines the initial transmit power of
all � antenna ports in all � cells. As observed previously, this
command has computational complexity �� ·$(1) = $(��).
The main loop involves the commands between lines 4 and
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8. This loop is executed ) times until the stop condition is
determined. Line 4 calculates the target SINR Γ

target
2,3

according
to Eq. (23). This operation has computational complexity � ·� ·
$(1) = $(��). Line 5 determines the update of the transmit
power in all antenna ports of each cell according to Eq. (22).
This command has computational complexity � · � · $(1) =
$(��). Line 7 defines the execution of the transmit power
updates, which has computational complexity � · � · $(1) =
$(��). Therefore, the computational complexity of the soft
dropping power control based on the previous pseudo-code is
$(��) + ) ($(��) +$(��) +$(��)) → $()��).
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