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Abstract—Recent research has delved into advanced designs
for reconfigurable intelligent surfaces (RIS) with integrated
sensing functions. One promising concept is the hybrid RIS
(HRIS), which blends sensing and reflecting meta-atoms. This
enables HRIS to process signals, aiding in channel estimation
(CE) and symbol detection tasks. This paper formulates semi-
blind receivers for HRIS-aided wireless communications that
enable joint symbol and CE at the HRIS and BS. The proposed
receivers rely on a new tensor modeling approach for the
signals received at both the HRIS and BS while exploiting a
tensor signal coding scheme at the transmit side. Specifically,
by capitalizing on the multilinear structures of the received
signals, we develop iterative and closed-form receiver algorithms
for joint estimation of the uplink channels and symbols at
both the HRIS and the BS. Enabling joint channel and symbol
estimation functionalities, the proposed receivers offer symbol
decoding capabilities to the HRIS and ensure ambiguity-free
separate CE without requiring an a priori training stage. We also
study identifiability conditions ensuring a unique joint channel
and symbol recovery and discuss the computational complexities
and tradeoffs involved by the proposed semi-blind receivers.
Our findings demonstrate the competitive performances of the
proposed algorithms at the HRIS and the BS and uncover distinct
performance trends based on the possible combinations of HRIS-
BS receiver pairs. Finally, extensive numerical results elucidate
the interplay between power splitting, symbol recovery, and CE
accuracy in HRIS-assisted communications. Such insights are
pivotal for optimizing receiver design and enhancing system
performance in future HRIS deployments.

Index Terms—Reconfigurable surfaces, hybrid RIS, semi-blind
receivers, joint channel and symbol estimation, tensor modeling.

I. INTRODUCTION

RECENTLY, reconfigurable intelligent surface (RIS) has
been envisioned as a key enabling technology for de-

ploying future wireless networks, for example, the sixth gen-
eration (6G) [1]–[4]. RIS is a large array of passive reflecting
elements mounted on a planar surface that can independently
interact with the impinging electromagnetic waves by means
of software-controllable phase shifts [1], [2], [5], [6]. Several
applications for RIS can be found in the literature, such
as coverage for users located in dead zones and co-channel
interference suppression for users located at the edges of
cells [6], [7], improvement of the physical layer security
[8], integration with unmanned aerial vehicles (UAVs) and
other aerial platforms [9], simultaneous wireless information
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and power transfer (SWIPT) [6], and integrated sensing and
communications (ISAC) [10], to mention a few.

In this context, accurate channel state information (CSI)
is crucial in optimizing RIS-assisted systems [11], [12]. Its
acquisition is necessary and challenging for designing the RIS
reflection coefficients as well as the precoder/beamformer at
both the base station (BS) and user terminal (UT) [7], [13]–
[15]. In general, channel estimation (CE) in multiple-input
multiple-output (MIMO) RIS-assisted wireless communication
systems faces two main challenges. The first is related to a
notable increase in the required number of pilots compared
to conventional systems, driven by a large number of RIS
elements, leading to a significantly large number of channel
coefficients [16]–[21]. The second one is the unavailability
of estimating the separate channels from the RIS-assisted
one, namely UT-RIS and RIS-BS links, since the passive RIS
(PRIS) acts only as signal reflector [17], [19]–[22] and only
the cascaded channel is estimated1 so that all the receiver
processing is done only at the BS or the UT. Solutions in
the literature that have addressed these challenges are usually
sorted into two families of methods: the first one incorporates
novel algorithms to leverage the channel structure while pre-
serving the original hardware properties of the PRIS, while
the second one involves modifying its hardware architecture
to allow for additional signal processing capabilities at the RIS
[16]. This paper relies on the second approach.

Given the passive nature of the RIS, most CE-related work
commonly falls into cascaded CE, which is sufficient for
applications like rate maximization and beamforming design.
In contrast, a scaling ambiguity-free separate CE is preferred
for applications like channel sounding, user localization, and
mobility tracking, as highlighted in [25]. For instance, in
mobility scenarios, [26] argues that separate CE facilitates
channel tracking by identifying the behavior of the individ-
ual links under temporal variations. As pointed out therein,
cascaded CE complicates tracking as changes occur in either
the UT-RIS, RIS-BS, or both links. Moreover, in scenarios
where the UT-RIS channel changes more rapidly than the
RIS-BS one, the former must be estimated more often, while
the latter not, highlighting the importance of recovering such
channels individually instead of the combined one [13], [27].
On the other hand, some designs depend on the availability of
the individual channels, such as in [28], [29], and [30]. The

1The cascaded (RIS-assisted, concatenated, composite, combined, or com-
pound) channel comprises the joint effect of both UT-RIS and RIS-BS
channels. Sometimes, the cascaded CE is made through its decoupled version,
whose estimated matrices are affected by scaling ambiguities, as shown in
[23] and [24]. This necessitates complementary techniques to acquire the
knowledge required for scaling removal.
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importance of estimating the involved channels separately is
reinforced in [19], [31]–[34].

From a hardware perspective, a notable study was carried
out in [35]. Specifically, the authors in [35] proposed a
RIS structure by sparsely replacing some passive reflecting
elements with active sensors connected to a single receive RF
chain2 each, thereby enabling baseband processing at the RIS
controller. These active elements merely sense the impinging
signal without reflection. Adopting this hybrid architecture3,
the authors introduced a CE scheme based on compressed
sensing and deep learning, achieving minimal pilot overhead
while facilitating the CE process at the sacrifice of increased
hardware complexity and power consumption. Inspired by the
pioneering research in [35], such a hybrid architecture has
been comprehensively investigated in subsequent works, such
as in [20]–[22], [34] and references therein.

In contrast to RIS, another metasurface-based technology
called dynamic metasurface antenna (DMA) has emerged to
enable low-cost, extremely large antenna arrays [37]. Despite
the differences between the RIS and DMA operation, it is
attainable to envision a hybrid meta-atom capable of reflecting
and sensing since their meta-atoms share similarities [1]. Mo-
tivated by DMAs, a novel metasurface was introduced in [38],
where the physical structure of each meta-atom is modified to
couple small portions of the incoming wave. Relying on this
paradigm, [1] introduced the co-called hybrid RIS (HRIS) ar-
chitecture, outlining its prospects/obstacles. These meta-atoms
are integrated into sampling waveguides similarly to [38], and
the sensed signals are forwarded via analog combining to F
chains, whose outputs enable signal processing in the digital
domain while retaining its reconfigurable reflection function-
alities. The relationship of both reflected and sensed portions
is dictated by the coupling level, controlled by changing either
the substrate-integrated waveguide or the annular slot sizes [1].
Based on this architecture and leveraging transmitted pilots,
the work [19] exploits the signal processing capabilities at the
HRIS to estimate the UTs-HRIS channels from the sensed
signal part, while the HRIS-BS channel is estimated at the BS
from the reflected one. This is accomplished by exploiting a
feedback control link (CL)4 between the HRIS and the BS,
through which the BS acquires the UT-HRIS channel matrix
estimated at the HRIS. A detailed study of different hybrid
architectures is provided in [2].

Tensor decompositions have been successfully applied to
model wireless communication systems [39], [40], including
blind/semi-blind receivers [41], space-time (ST)/space-time-
frequency (STF) coding schemes, [42], [43]. These works
have highlighted the effectiveness of tensor decompositions
and their powerful uniqueness properties to harness the mul-
tidimensional nature of received signals and channels for
deriving receiver algorithms capable of operating semi-blindly

2This receive RF chain is comprised of a low noise amplifier, a downcon-
verter mixer (from RF to baseband), and an analog-to-digital converter [36].

3This architecture has been referred to in the literature using different
terminologies, such as hybrid semi/passive RIS, sensing RIS, receiving RIS,
or simply hybrid RIS. Such an architecture should not be confused with the
one considered in this paper, as will be clear later.

4This CL is used to reconfigure the reflection patterns of the RIS. In [19],
error-free transmission over a high throughput CL was considered.

under less restrictive requirements than competing (matrix-
based) methods while offering good performance/complexity
tradeoffs. See [44]–[47] and references therein for an overview.
Recent works have introduced tensor modeling to the context
of passive RIS (PRIS)-aided communications to solve prob-
lems such as CE, semi-blind joint CE and symbol detection,
and channel tracking [23], [24], [48]–[51]. Among these
works, parallel factor (PARAFAC) decomposition, also known
as canonical polyadic decomposition (CPD) [52] was applied
to solve the CE estimation problem in a PRIS approach [23],
[24], [53], while [21] in a hybrid semi-passive one. More
recently, [51] proposed PARAFAC-based algorithms for CE
accounting for RIS operating under imperfections from real-
world effects. In particular, without requiring prior CE via
training sequences, [49] and [50] introduced data-aided semi-
blind CE (SBCE) methods for PRIS-aided communications
using Khatri-Rao ST coding (KRSTC), integrating symbol
detection and CE through closed-form and iterative receivers,
respectively. In [50], the authors exploited the PARATUCK
tensor decomposition [54], [55], while a generalized version
was presented in [49]. Nonetheless, KRSTC thresholds the
number of streams to that of transmitting antennas.

Different from the aforementioned works, in most restricted
to PRIS, where the cascaded CE problem is concentrated at
the BS, this paper shows that the estimation of the individual
channels and the transmitted symbols can be achieved jointly
at both the HRIS and BS in a semi-blind fashion by resorting
to tensor modeling. Moreover, in contrast to [19], which relies
on pilot-assisted CE at the HRIS, our approach expands upon
this by incorporating joint symbol and CE directly at the
HRIS. This is achieved iteratively or in closed form using
simple algorithms without the need for pilot training. As will
be discussed later, empowering HRIS with symbol-decoding
capabilities can be useful in a number of scenarios.

The contributions of this paper are summarized as follows:
First, leveraging the HRIS architecture [1] and assuming a

one-way structured time domain protocol, we formulate the
received signals at both the HRIS and BS using a new tensor
formalism that disentangles the received signal into effective
channel tensors and coded signal tensors following PARAFAC
and/or Tucker decompositions. Exploiting these tensor models
allows the HRIS to jointly estimate the associated channel and
decode the transmitted symbols in a semi-blind fashion. By
transmitting data symbols in advance during the CE stage, our
approach can improve data rate and reduce symbol decoding
delay compared to pilot-only methods.

Second, capitalizing on the proposed tensor models, we
derive semi-blind joint symbol and CE methods for HRIS-
aided MIMO wireless communication systems. More specif-
ically, we formulate iterative and closed-form receiver pairs
that are split between HRIS and BS to efficiently solve
the SBCE problem. The proposed receivers eliminate the
need for training sequences and additional steps for scaling
ambiguity removal on the estimated channels and symbols,
while partially circumventing the path-loss effects induced by
the cumulated UT-HRIS and HRIS-BS links.

Third, we study identifiability at both the HRIS and the BS,
derive a set of conditions that ensure a unique channel and
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symbol recovery, and discuss the computational complexities
and trade-offs involved by the proposed semi-blind receivers.

Finally, extensive numerical results showcase the interplay
between power splitting, symbol recovery, and CE accuracy
in HRIS-assisted communications. Our findings demonstrate
competitive performances among receivers at the HRIS and
BS and uncover distinct performance trends based on the
combinations of HRIS-BS receiver pairs. We also delve into
a brief exploration of scenarios where a joint symbol and CE
at the HRIS are useful.

The rest of the paper is organized as follows. Section II
describes the system and signal models at the HRIS and
the BS, including the transmission protocol and the main
assumptions. Section III derives the corresponding tensor
signal models and develops the core equations associated with
the receiver design. The proposed semi-blind receivers for the
HRIS and the BS are detailed, respectively, in Sections IV
and V. Section VI discusses identifiability, uniqueness, and
computational complexity. Section VII contains our numerical
results, while Section VIII provides a discussion on potential
use cases benefiting from the proposed joint channel/symbol
estimation at the HRIS. Conclusions are drawn in Section IX.

A. Notation and properties

We utilize lowercase a, bold lowercase a, bold uppercase A,
and calligraphic A to denote scalars, column vectors, matrices,
and tensors, respectively. The (i, j)-th element of A is denoted
as [A]i,j . Transpose, conjugate, and Moore-Penrose pseudo-
inverse of A are denoted as AT, A∗, and A†, respectively.
The operator diag{a} constructs a diagonal matrix from a.
⌈a⌉ is the smallest integer greater than or equal to a, and
the Frobenius norm is indicated by ||·||F. The symbols ⋄, and
⊗ represent the Khatri-Rao and Kronecker matrix products,
respectively. Stated A ∈ CI×J , the vectorization operator,
denoted as vec {A}, yields the vector a ∈ CJI×1. Conversely,
the reverse operation, unvecI×J(a), restores the matrix A. A
tensor A ∈ CI1×I2×···×IP is a multidimensional array with
order P , and unfolding is the procedure that reshapes it into a
matrix; for instance, [A](1) ∈CI1×I3I2 , [A](2) ∈CI2×I3I1 and
[A](3) ∈ CI3×I2I1 denote the wide 1-mode, 2-mode, and 3-
mode unfoldings of a third-order tensor X ∈ CI1×I2×I3 . In
addition, I3,P ∈ RP×P×P is the 3rd-order identity tensor.
Consider two P -th order tensors A ∈ CI1×···×Ip×···×IP and
B ∈ CJ1×···×Jq×···×JP , such that IP = JP and Ip = Jq . We
define the mode-wise contraction operation as a contraction
between slices of A and B. For simplicity, we assume this
operation affects the P -mode of such tensors, which gives

A P
q
pB

.
=C ∈CI1×···×Ip−1×Ip+1×···×IP−1×J1×···×Jq−1×Jq+1×···×JP , (1)

where the P -mode slice of the (2P−3)-th order tensor C results
from the tensor contraction between the P -mode slices of A
and B, involving mode p of A and mode q of B. For instance,
the mode-wise contraction of two 3rd-order tensors A and B
is accomplished by

C··j =
(
A 3

q
pB

)
··j = A··j •qp B··j , j = 1, · · · , JP . (2)

Throughout this paper, we make use of the following identities:

vec {ABC} = (CT ⊗A)vec {B} . (3)

AB⊗CD = (A⊗C)(B⊗D). (4)

diag{a} b = diag{b}a, for a, b ∈ CP×1. (5)

We consider a single-user HRIS-assisted MIMO commu-
nication system where the multi-antenna UT and BS are
equipped with L and M antennas, respectively. This work
considers uplink communication5. We suppose there is no
direct link between the BS and UT due to blockages, and it
is left out of the signal model. Hence, only non-LoS (NLoS)
transmission is considered. In addition, the HRIS controller is
linked to the BS via CL, which is assumed to be error-free.
The UT communicates with the BS through the assistance of
an HRIS comprising a metasurface of N meta-atom elements
connected via analog combining to a digital controller through
Nc RF chains [1], [19], as depicted in Fig. 1. We use the
power split parameter ρn(t) to represent the fraction of the
signal reflected from the n-th HRIS meta-atom at the t-th time
instant. Hence, 1−ρn(t) denotes the sensed portion forwarded
to the RF chains. ejψn(t) is the controllable reflecting phase-
shift of the n-th meta-atom at the t-th time instant, and
ejϕnc,n(t) is the phase-shift that models the joint effect on
the wave captured by the n-th meta-atom element at the t-th
time instant caused by the adjustable frequency response of the
meta-material element by phase-shifting and the propagation
inside the waveguide, which forwards to the nc-th RF chain.
We consider ψn(t), ϕnc,n(t) ∈ [0, 2π). A structured two-
block time-domain transmission is adopted, during which the
semi-blind CE occurs in the first block of Ts symbol periods,
comprised of K sub-frames of T symbol periods each (i.e.,
Ts = KT ), while the second one has Td symbol periods
dedicated for pure data transmission. Note that during Ts
symbol periods, this structure spends the same time as that
dedicated to addressing CE in [19], in which only pilots
are transmitted. The key difference is that in our approach,
data symbols are transmitted in advance during Ts symbol
periods, enhancing the data rate and reducing the overall
symbol decoding delay. A quasi-static flat-fading channel with
coherence time Tc is assumed, where UT-HRIS and HRIS-BS
channels remain constant during at least Ts symbol periods,
with Ts ≪ Tc. Digital precoding/combiner design, RIS phase
shift optimization, and signal processing in the second block
fall outside the scope of this work.

II. SYSTEM AND SIGNAL MODELS

A. Tensor ST coding (TSTC)

Before transmission at the UT, the input symbols undergo
a tensor ST coding scheme [42], which incorporates spatial
multiplexing with spreading, enabling a linear combination of
streams across both spatial and temporal dimensions. Con-
sequently, our transmit signal model extends beyond that
exploited in [50]. This way, all the R independent streams at

5Although the primary focus of this paper is on uplink communication from
the UT to BS, the results obtained can also be applied to downlink com-
munication in the opposite direction by leveraging uplink-downlink channel
reciprocity and simply reversing the roles of the transmitter and receiver.
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Fig. 1. System model.

Fig. 2. Transmission time structure.

the t-th symbol period of the k-th sub-frame (k = 1,· · ·,K)
are split across L combiners. At the l-th combiner, each
independent symbol xr,t (r = 1,· · ·,R) is coded by wl,r,k
(l = 1, · · · , L). After that, the R coded signals are combined to
yield sl,t,k = (1/

√
L)

∑R
r=1 wl,r,kxr,t, to be forwarded to the

l-th transmitting antenna. We assume that coefficients wl,r,t,k
remain constant within the k-th sub-frame and may vary from
one sub-frame to another, which means wl,r,t,k = wl,r,k, for
t = 1, · · · , T . Collecting the coded symbols forwarded to
all L antennas, we have st,k = Wkxt ∈ CL×1, in which
xt

.
=[x1,t,· · ·, xR,t]T∈CR×1 is comprised by symbols coming

from all the R data streams at the t-th time instant, and
Wk ∈ CL×R is the coding matrix of the k-th sub-frame
gathering all R inputs and L outputs, i.e, [Wk]l,r = wl,r,k. The
HRIS parameters (ρ, ψ and ϕ) are assumed to be reconfigured
just like the coefficients wl,r,k, which leads to ρn,t,k = ρn,k,
ψn,t,k = ψn,k and ϕnc,n,t,k = ϕnc,n,k, following [19].

The portion of the signal transmitted by the L UT antennas,
sensed by the N HRIS meta-atoms, and then forwarded to the
Nc RF-chains via analog combining at the t-th time slot of
the k-th sub-frame, is given by yRC

t,k = ΦkGWkxt + ν
RC
t,k ∈

CNc×1, where νRC
t,k is the associated additive noise at the

HRIS, G ∈ CN×L is the UT-HRIS channel matrix and
Φk ∈ CNc×N is the sensing phase shift matrix of the k-
th sub-frame that yields the analog combining carried out
by HRIS [19], in which [Φk]nc,n =

√
(1−ρn,k)/Ncejϕnc,n,k .

Meanwhile, the received signal at the BS, corresponding to
the portion of the signal reflected by the HRIS, is given by
yBS
t,k = Hdiag{ψk}GWkx(t) + ν

BS
t,k ∈ CM×1, where νBS

t,k

represents the noise at the BS, H ∈ CM×N is the HRIS-BS
channel matrix, and ψk

.
= [

√
ρ1,ke

jψ1,k ,· · ·,√ρN,kejψN,k ] ∈
CN×1 is the reflecting phase-shift beam. After T time slots of
the k-th sub-frame, we collect column-wise yRC

t,k and yBS
t,k ,

into the matrices YRC
k

.
= [yRC

1,k , · · · ,yRC
T,k] ∈ CNc×T and

YBS
k

.
= [yBS

1,k, · · · ,yBS
T,k] ∈ CM×T , respectively, to get

YRC
k = ΦkGWkX+VRC

k ∈ CNc×T (6)

and

YBS
k = Hdiag{ψk}GWkX+VBS

k ∈ CM×T , (7)

where X = [x1, · · · ,xT ] ∈ CR×T is the symbol matrix,
which collects T symbol periods of the R data streams. Here,
VRC
k and VBS

k stand for the noise matrices associated with
sub-frame k at the HRIS and BS, respectively.

B. Khatri-Rao ST coding (KRSTC)

We also consider KRSTC for comparison purposes. Follow-
ing [56], [50] and the adopted time protocol, each independent
symbol xl,t (l = 1, · · · , L) is coded by a coefficient λl,k
(k = 1, · · · ,K) to yield sl,t,k = λl,kxl,t, which is then for-
warded to the l-th transmitting antenna. Collecting the coded
symbols for all L antennas, we have st,k = diag{λk}xt ∈
CL×1, in which xt

.
= [x1,t, · · · , xL,t]T ∈ CL×1 and λk

.
=

[λ1,k, · · · , λL,k]T ∈ CL×1 is the coding vector of the k-th
sub-frame. In this case, (6) and (7) are, respectively, recast as

YRC
k = ΦkGdiag{λk}X+VRC

k ∈ CNc×T , (8)

YBS
k = Hdiag{ψk}Gdiag{λk}X+VBS

k ∈ CM×T , (9)

where the symbol matrix is recast as X ∈ CL×T . Note that
KRSTC is a special case of TSTC, where the coding matrix
associated with the k-th sub-frame is diagonal. This implies
R = L and the absence of signal combining/multiplexing at
the transmitter. The signal model of (9), which follows the
PARATUCK model, was considered in [50] for the PRIS case.

III. TENSOR SIGNAL MODELING

In the following, we recast the received signals using a
tensor approach. Indeed, these signals are three-way (3D)
arrays having one spatial dimension (Nc for the HRIS or M
for the BS) and two temporal dimensions (T and K). These
tensor models are exploited later to derive the proposed HRIS-
BS semi-blind receiver pairs.

The signal sensed at the HRIS associated with the k-
th sub-frame, defined in (6), can be rewritten as YRC

··k =
Φ··kGW··kX + VRC

··k , which can be viewed as a frontal
slice of the 3rd-order sensed signal tensor YRC ∈ CNc×T×K

constructed by concatenating YRC
··k along the third mode, for

k = 1,· · ·,K. For presentation convenience, in the following
equations we consider the noiseless part of YRC, defined
as ỸRC, such that YRC = ỸRC + VRC, where VRC rep-
resents the additive noise tensor. Upon closer examination,
ỸRC can be viewed as a slice-wise product between the
effective UT-HRIS channel C and the coded symbol tensor
S, and can be written using the n-mode product notation
[57] as C = TΦ ×1 INc

×2 GT ×3 IK ∈ CNc×L×K and
S =W ×1 IL ×2 X

T ×3 IK ∈CL×T×K , respectively, where
TΦ ∈ CNc×N×K is the sensing phase shift tensor, while
W∈CL×R×K is the coding tensor. Using the K-mode slice
contraction operator (1), we have

ỸRC = C 3
1
2S =

(
TΦ ×2 G

T
)

3
1
2

(
W ×2 X

T
)
, (10)

From this perspective, the sensed signal at the HRIS results
from a mode-wise contraction of the tensors C and S, which
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Fig. 3. Tensor structures of the received signals at the HRIS and the BS.

follow Tucker-(1,3) models [58], respectively. We refer to the
tensor model in (10) as a double Tucker model. Its scalar
representation is given by

ỹRC
nc,t,k =

N∑
n=1

L∑
l=1

R∑
r=1

√
1− ρn,ke

jϕnc,n,kgn,lwl,r,kxr,t, (11)

Likewise, we rewrite (7) as YBS
··k = HΨ··kGW··kX+VBS

··k ,
which matches to the k-th frontal slice of the 3rd-order tensor
YBS ∈ CM×T×K . Correspondingly, ỸBS is the noiseless
received signal tensor at the BS, where YBS = ỸBS+VBS and
VBS is the corresponding additive noise tensor. The tensor ỸBS

results from a mode-wise contraction between the cascaded
UT-HRIS-BS channel tensor TΩ and the coded symbol tensor,
where the first follows a PARAFAC model and can be written
as TΩ = I3,N ×1 H ×2 GT ×3 Ψ ∈ CM×L×K , where
Ψ
.
=[ψ1,· · · ,ψK ]T∈CK×N . Hence, ȲBS is given by

ỸBS=TΩ 3
1
2S=

(
I3,N×1H×2G

T×3Ψ
)

3
1
2

(
W×2X

T
)
. (12)

Since the signal tensor received at the BS corresponds to
the 3-mode contraction between a PARAFAC and a Tucker-
(1,3) models, we refer to (12) as a PARAFAC-Tucker model.
Its scalar representation is given by

ỹBS
m,t,k =

N∑
n=1

L∑
l=1

R∑
r=1

hm,n
√
ρn,ke

jψn,kgn,lwl,r,kxr,t. (13)

The mode-wise contraction formalism, applied in (10) and
(12), makes it possible to decouple the tensor structures of
the transmitted signals and their respective combined/effective
channels, revealing their associated (PARAFAC/Tucker) tensor
decompositions in a modularized fashion. The received signal
tensors at both the HRIS and BS are illustrated in Fig. 3.

Remark 1: If KRSTC is used instead of TSTC, the re-
ceived signal tensors YRC and YBS are built the same
way, assuming R = L. The coded symbol tensor fol-
lows a PARAFAC model and is written as S̄ = I3,L ×1

IL ×2 X
T ×3 Λ ∈ CL×T×K , where Λ

.
= [λ1,· · ·,λK ]T ∈

CK×L. In this case, the received signal tensors are
given by ỸRC =

(
TΦ ×2 G

T
)

3 1
2

(
I3,L ×2 X

T ×3 Λ
)
, and

ỸBS =
(
I3,N×1H×2G

T×3Ψ
)

3 1
2

(
I3,L×2X

T×3Λ
)
, corre-

sponding to Tucker-PARAFAC and double PARAFAC models,
respectively, which are clearly special cases of (10) and (12).

IV. SEMI-BLIND RECEIVERS FOR THE HRIS

In this section, we develop the proposed semi-blind re-
ceivers for joint channel and symbol estimation at the HRIS by
exploiting the tensor models derived in the previous section.
Considering the noisy received signal tensor YRC = ỸRC +

VRC at the HRIS, the UT-HRIS channel G and the symbol
matrix X are found by solving the following problem

min
G,X

∥∥∥YRC −
(
TΦ ×2 G

T
)

3
1
2

(
W ×2 X

T
) ∥∥∥2

F
. (14)

Starting from this cost function, we formulate two solutions
to solve this problem by exploiting the different reshapings of
the tensor signal structure. The first one resorts to an iterative
alternating linear estimation scheme, while the second delivers
closed-form estimates of the channel and symbols.

A. HRIS-BALS receiver
Using the definition (2), and applying vec{·} to the k-

th frontal slice of ỸRC, defined in (10), we get ỹRC
k

.
=

vec{(C 3 2
1S)··k} = C··k•21S··k = (XT⊗INc

)(WT
··k⊗Φ··k)g ∈

CTNc×1, where g = vec {G} ∈ CLN×1. We define ỹRC .
=[

(ỹRC
1 )T, · · · , (ỹRC

K )T
]T

= vec
{[
ỸRC

]T
(3)

}
∈ CKTNc×1 by

stacking ỹRC
k during the K sub-frames, to get

ỹRC =
(
IK ⊗XT ⊗ INc

)
Fgg, (15)

where Fg
.
=

[
W··1⊗ΦT

··1, · · · ,W··K⊗ΦT
··K

]T ∈ CKRNc×LN

contains the coding structure and the sensing phase shifts,
which are known at the HRIS. A least-squares (LS) estimate
of the UT-HRIS channel can be found by solving the problem

ĝ = argmin
g

∥∥∥yRC −
(
IK ⊗XT ⊗ INc

)
Fgg

∥∥∥2
F
, (16)

whose analytical solution is given by

Ĝ = unvecN×L
{[(

IK ⊗XT ⊗ INc

)
Fg

]†
yRC

}
, (17)

Exploiting
[
ỸRC

]
(2)

=
[
(ỸRC

··1 )T,· · ·, (ỸRC
··K)T

]
∈ CT×KNc ,

corresponding to the 2-mode unfolding of ỸRC, in which
ỸRC

··k = (C 3 2
1S)··k (k=1,· · ·,K) we have[

ỸRC
]T
(2)

= FxX ∈ CKNc×T , (18)

where Fx
.
=

[
(Φ··1GW··1)

T, · · · , (Φ··KGW··K)T
]T ∈

CKNc×R. The symbol matrix can be found by solving

X̂ = argmin
X

∥∥∥[YRC
]T
(2)

− FxX
∥∥∥2

F
, (19)

the solution of which is given by

X̂ = F†
x

[
YRC

]T
(2)
. (20)

Note that (17) and (20) are jointly used to iteratively estimate
the UT-HRIS channel and symbols via a bilinear alternating LS
(BALS) algorithm, herein referred to as HRIS-BALS receiver.
The algorithm consists of estimating G and X iteratively,
starting from a random initialization until convergence is
achieved. As discussed in previous works [52], [24], such a
BALS procedure converges after a few iterations and provides
unique estimates of the channel and symbol matrices up to
trivial scaling ambiguities, as will be discussed later. The
HRIS-BALS receiver is summarized in Algorithm 1.

Remark 2: The algebraic steps to derive the BALS receiver
at the HRIS for the KRSTC scheme follow (17) and (20) by
replacing W··k by diag{λk} and redefining Fg and Fx as Fg

.
=[

diag{λ1}⊗ΦT
··1,· · ·,diag{λK}⊗ΦT

··K
]T ∈ CKLNc×LN and

Fx
.
=
[
diag{λ1}GTΦT

··1,· · ·,diag{λK}GTΦT
··K

]T ∈CKNc×L,
where R = L is assumed.
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Algorithm 1: HRIS-BALS receiver

1. Set i = 0 and initialize X̂(i=0) randomly;
2. i = i+ 1;
3. Get Ĝ(i) = unvecN×L

{[(
IK ⊗XT

(i−1) ⊗ INc

)
Fg

]†
yRC

}
;

4. Get X̂(i) = F†
x(i)

[
YRC

]T
(2)

;
5. Repeat steps 2-5 until convergence;
6. Remove scaling ambiguities.

Algorithm 2: HRIS-KronF receiver

1. Using (24), find a LS estimate of X̂G;
2. Construct Pxg by rearranging X̂G;
3. Compute [u1, σ1,v1]←− truncated-SVD(Pxg);
4. Reconstruct Ĝ and X̂:

Ĝ← unvecN×L{
√
σ1v

∗
1}, X̂← (unvecT×R{

√
σ1u1})T;

5. Remove scaling ambiguities.

B. HRIS-KronF receiver

Define ˜̄yRC
k

.
= vec{(C 3 2

1S)T··k} = (Φ··k ⊗ IT )XGwk ∈
CNcT×1, where wk

.
= vec

{
WT

··k
}

∈ CLR×1 and XG
.
=

G ⊗ XT ∈ CNT×LR. Applying vec{·} again, we obtain
˜̄yRC
k =(wT

k⊗Φ··k⊗IT)xg, where xg=vec {XG}∈CLRNT×1.
Defining ˜̄yRC .

=
[
(˜̄yRC

1 )T,· · ·, (˜̄yRC
K )T

]T
= vec

{[
ỸRC

]
(2)

}
collecting the sensed signals during the K sub-frames, we get

˜̄yRC = (Fxg ⊗ IT )xg ∈ CKNcT×1, (21)

where Fxg ∈ CKNc×LRN is given by

Fxg
.
=

[
w1 ⊗ΦT

··1, · · · ,wK ⊗ΦT
··K

]T
. (22)

Let us consider the following problem

x̂g = argmin
xg

∥∥ȳRC − (Fxg ⊗ IT )xg

∥∥2 , (23)

from which we can determine an LS estimate for the matrix
XG through its corresponding solution

X̂G = unvecNT×LR
{
(F†

xg ⊗ IT )ȳ
RC

}
. (24)

Upon obtaining X̂G, the next step involves finding an estimate
of X and G from it. To this end, we address the problem

min
X,G

∥∥∥X̂G −G⊗XT
∥∥∥2
F
, (25)

whose solution is found by the so-called Kronecker Factor-
ization (KronF) algorithm [49]. The solution to this problem
is found by recasting the problem (25) as a rank-1 matrix
approximation problem minX,G ||Pxg−vec{XT}vec{G}T||2F,
where Pxg ∈ CRT×LN is a matrix rearrangement of the blocks
contained in X̂G (further details can be found in [49]). From
this problem, the estimates of X and G are given by the
dominant left and right singular vectors of Pxg, respectively.
This procedure leads to the HRIS-KronF receiver, whose key
steps are summarized in Algorithm 2.

C. HRIS-KRF receiver

For the KRSTC scheme, closed-form estimates of G and
X are obtained from similar steps analogous to (24) and (25)
after minor algebraic modifications. In this case, we have

X̂G = unvecNT×L{(F†
xg ⊗ IT )ȳ

RC}, (26)

Algorithm 3: HRIS-KRF receiver

1. Using (26), find a LS estimate of X̂G;
2. Given Q←− X̂G, estimate Ĝ and X̂:

for l = 1, · · · , L
Ql = unvecT×N{ql}
[u1, σ1,v1]←− truncated-SVD(Ql)
ĝl =

√
σ1v

∗
1, x̂l =

√
σ1u1

end;
3. Ĝ←− [ĝ1, · · · , ĝL], X̂←− [x̂1, · · · , x̂L]

T;
4. Remove scaling ambiguities.

where Fxg
.
=

[
λ1 ⊗ ΦT

··1, · · · ,λK ⊗ ΦT
··K

]T ∈ CKNc×LN .
Once X̂G is found, we solve the problem minX,G ||X̂G−G ⋄
XT||2F, for which can be solved using the Khatri-Rao Factor-
ization (KRF) algorithm [24], [59]. This algorithm corresponds
to solving L rank-1 matrix approximation subproblems, where
each subproblem operates on the reshaping of the l-th column
of X̂G into a rank-1 matrix Ql ∈ CT×N . The l-th columns
of X̂T and Ĝ are respectively found from the dominant left
and right singular vectors of Ql, respectively. The HRIS-KRF
receiver is summarized in Algorithm 2.

Remark 3: The HRIS does not need to estimate the full
information contained in the symbol matrix. It may be of
interest to only decode a subset of columns of X, leaving
the remaining subset to be decoded by the BS. As eluci-
dated in Section VIII, X can be partitioned into user data
and control data submatrices during the transmission time
structure. For ease of exposition, we consider that HRIS and
BS fully estimate the symbol matrix. Note also that even in
a scenario where the HRIS does not need to perform data
decoding, the proposed semi-blind receivers provide data-
aided CE capabilities at the HRIS. In this scenario, data
symbols intended for the BS are exploited at the HRIS to
estimate the associated channel matrix, as opposed to existing
methods, which accomplish this by using only pilot symbols.

V. SEMI-BLIND RECEIVERS FOR THE BS
As for the HRIS, joint symbol and CE can be achieved

at the BS by exploiting the tensor structure of the received
signal YBS as well as the estimated UT-HRIS channel matrix
obtained at the HRIS and conveyed via the CL. Recall that the
BS knows the coding tensor and the reflection phase shifts. We
consider the following LS tensor fitting problem

min
H,X

∥∥∥ỸBS−
(
I3,N×1H×2Ĝ

T×3Ψ
)

3
1
2

(
W×2X

T
)∥∥∥2

F
. (27)

In what follows, we exploit the different reshapings of the
received tensor YBS to derive the corresponding iterative and
closed-form semi-blind receivers at the BS.

A. BS-BALS receiver

Concatenating the frontal slices ỸBS
··k = (TΩ 3 1

2S)··k and
ỸBS

··k for k = 1, 2, · · · ,K, we can obtain the 1-mode and
2-mode unfoldings of the received tensor ỸBS, given by[
ỸBS

]
(1)

=
[
ỸBS

··1 , · · · , ỸBS
··K

]
∈ CM×KT and

[
ỸBS

]
(2)

=[
(ỸBS

··1 )
T, · · · , (ỸBS

··K)T
]
∈ CT×KM . These unfoldings can be

expressed in compact form as[
ỸBS

]
(1)

= HEh(IK ⊗X), (28)[
ỸBS

]T
(2)

= (IK ⊗H)ExX, (29)
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Algorithm 4: BS-BALS receiver

1. Get Ĝ from the feedback control link;
2. Set i = 0 and initialize X̂(i=0) randomly;
3. i = i+ 1;
4. Get Ĥ(i) =

[
YBS

]
(1)

[
Eh(i−1)(IK ⊗ X̂(i−1))

]†;

5. Get X̂(i) =
[
(IK ⊗ Ĥ(i))Ex

]† [YBS
]T
(2)

;
6. Repeat steps 3-6 until convergence;
7. Remove scaling ambiguities.

where Eh ∈ CN×KR and Ex ∈ CKN×R are defined as

Eh
.
=

[
diag{ψ1} ĜW··1, · · · ,diag{ψK} ĜW··K

]
,

Ex
.
=
[
WT

··1Ĝ
Tdiag{ψ1},· · ·,WT

··KĜTdiag{ψK}
]T
.

respectively. From (28) and (29), the estimation of the HRIS-
BS channel H and the symbol matrix X can be obtained by
solving the following LS problems

Ĥ = argmin
H

∣∣∣∣[YBS
]
(1)

−HEh(IK ⊗X)
∣∣∣∣2
F
, (30)

X̂ = argmin
X

∣∣∣∣[YBS
]T
(2)

− (IK ⊗H)ExX
∣∣∣∣2
F
, (31)

the solutions of which are respectively given by

Ĥ =
[
YBS

]
(1)

[
Eh(IK ⊗X)

]†
, (32)

X̂ =
[
(IK ⊗H)Ex

]† [YBS
]T
(2)
. (33)

Similarly to the HRIS side, the estimate of the HRIS-BS
channel and transmitted symbols can be obtained by solving
(32) and (33) iteratively using alternating least-squares. This
algorithm is referred to as the BS-BALS receiver and is
summarized in Algorithm 4.

Remark 4: For the KRSTC scheme, the BS-BALS receiver
follows the steps in (32) and (33) by replacing W··k by
diag{λk} and redefining Eh ∈ CN×KL and Ex ∈ CKN×L

as Eh
.
=
[
diag{ψ1}Ĝdiag{λ1},· · ·,diag{ψK}Ĝdiag{λK}

]
and

Ex
.
=

[
diag{λ1}ĜTdiag{ψ1},· · ·,diag{λK}ĜTdiag{ψK}

]T
,

where R = L is assumed.

B. BS-KronF receiver

We now derive the expressions for the closed-form estima-
tion of H and X are the BS. The procedure is analogous to
that discussed on the HRIS side. First, applying vec{·} to the
k-th frontal slice of ỸBS, we get ỹBS

k
.
=vec{(TΩ 3 1

2S)··k}=
(XT ⊗H)(WT

··k ⊗ diag{ψk})ĝ ∈ CTM×1. Stacking column-
wise the received signal vectors ỹBS

k , for k = 1, 2, · · · ,K, we
obtain the 3-mode unfolding of ỸBS, given by

[
ỸBS

]
(3)

=[
ỹBS
1 , · · · , ỹBS

K

]T ∈ CK×TM . The transposed version of this
unfolding can be expressed as[

ỸBS
]T
(3)

=
(
XT ⊗H

)
Exh(IK ⊗ ĝ), (34)

where Exh ∈ CRN×KLN is defined as

Exh
.
=

[
WT

··1 ⊗ diag{ψ1} , · · · ,WT
··K ⊗ diag{ψK}

]
. (35)

Defining XH
.
= XT ⊗ H ∈ CTM×RN , we first find its

compound estimate by solving the following LS problem

X̂H = argmin
XH

∥∥∥[YBS
]T
(3)

−XHExh(IK ⊗ ĝ)
∥∥∥2

F
, (36)

Algorithm 5: BS-KronF receiver

1. Get Ĝ from the feedback control link;
2. Using (37), find an LS estimate of X̂H;
3. Construct Pxh by rearranging X̂H;
4. Compute [u1, σ1,v1]←− truncated-SVD(Pxh);
5. Reconstruct X̂ and Ĥ:

X̂← [unvecT×R{
√
σ1v

∗
1}]T, Ĥ← unvecM×N{

√
σ1u1};

6. Remove scaling ambiguities.

the solution of which is given by

X̂H =
[
YBS

]T
(3)

[
Exh(IK ⊗ ĝ)

]†
. (37)

From the estimate X̂H, we can jointly find the individual
estimates of the X and H by solving the problem

min
X,H

∥∥∥X̂H −XT ⊗H
∥∥∥2
F
, (38)

which is solved via the KronF algorithm [49]. In our context,
this is accomplished by solving the following rank-1 matrix
approximation problem minX,H ||Pxh−vec{H}vec{XT}T||2F,
where Pxh ∈ CRT×LN is obtained by rearranging the matrix
blocks of X̂H (see [60] for details). The main steps of the
BS-KronF receiver are summarized in Algorithm 5.

Remark 5: When the KRSTC scheme is used, the estimation
steps can be simplified. Applying the vec{·} operator to
(9) and using (5), we obtain

[
ỸBS

]T
(3)

= XHdiag{ĝ}Exh,
where Exh

.
= ΛT ⋄ΨT ∈ CLN×K is constructed from the

definitions of Ψ and Λ (in Section III). This way, we get
X̂H =

[
YBS

]T
(3)

(
diag{ĝ}Exh

)† ∈CTM×LN . Then, we invoke
Algorithm 5 to estimate X ∈ CT×L and H ∈ CM×N .
Remark 5: It is worth noting that in a scenario where the
estimated symbol matrix X̂ is also conveyed to the BS via
the CE, the receiver processing simplifies to a simple LS
estimation step to estimate Ĥ. This special case is referred
to here simply as “LS”. Although this approach will increase
the control link load, it serves as a performance reference that
will be considered in our numerical evaluations.

VI. IDENTIFIABILITY, UNIQUENESS AND COMPLEXITY

Estimating X, G, and H at the HRIS and BS requires
solving a sequence of LS estimation steps that should ensure a
unique solution. For the TSTC scheme, this takes into account
satisfying the identifiability conditions of (17) and (20) for the
iterative receiver BALS, and (24) for the closed-form receiver
KronF at the HRIS, which are KNc ≥ R, KTNc ≥ LN and
KNc ≥ LRN , respectively. Similarly, at the BS, we need to
ensure the conditions KM ≥ R and KT ≥ N for BALS, and
K ≥ RN for KronF, as per (32), (33), and (37). Analogous
considerations should be made for the KRSTC scheme. The
identifiability conditions required to satisfy each receiver (at
both the HRIS and BS) are summarized in Table I for both
TSTC and KRSTC schemes, which are presented in terms of
the minimum number K of sub-frames necessary to ensure the
estimation of the corresponding channel and symbol matrices.
Note that for BALS receivers, the conditions necessary to
estimate both matrices must be satisfied simultaneously. To
address this, simplified conditions meeting this requirement
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TABLE I
IDENTIFIABILITY CONDITIONS AND COMPUTATIONAL COMPLEXITIES.

Receiver Entity Coding Condition K ≥ ⌈·⌉ Complexity O(·)
BALS HRIS TSTC (1/Nc)max{R,LN/T} KNc(R2+L2N2T )
KronF HRIS TSTC LRN/Nc LRN(LRNKNc+T )
BALS BS TSTC max{R/M,N/T} K(R2M+N2T )
KronF BS TSTC RN RN(RNK+TM)
BALS HRIS KRSTC (1/Nc)max{L,LN/T} L2KNc(1+N2T )
KRF HRIS KRSTC LN/Nc LN(LNKNc+T )

BALS BS KRSTC max{L/M,N/T} K(L2M+N2T )
KronF BS KRSTC LN LN(LNK+TM)

are provided in Table I. As the joint symbol and CE can be
accomplished iteratively or in closed form, there are four pos-
sible combinations of HRIS-BS receiver pairs for each coding
scheme (TSTC or KRSTC). In the TSTC scheme, the four
receiver pairs are BALS-BALS, BALS-KronF, KronF-BALS,
and KronF-KronF. In the KRSTC scheme, we have BALS-
BALS, BALS-KronF, KRF-BALS, and KRF-KronF. These
terminologies will be used in Section VII, where the numerical
results of the different receiver pairs will be evaluated.

Once the conditions outlined in Table I are met, the esti-
mated matrices Ĝ and X̂ (at the HRIS) and Ĥ and X̂ (at the
BS) share scaling ambiguities that mutually compensate each
other. At the HRIS side, and assuming the TSTC scheme,
such a relationship is X̂ = αX and Ĝ = (1/α)G. On the
other hand, for the KRSTC scheme, we have X̂ = ∆xX
and Ĝ = G∆g, where ∆x,∆g ∈ CL×L are diagonal
matrices such that ∆x∆g = IL. Hence, for TSTC, the
scaling ambiguities can be mitigated simply by sending a
single pilot embedded into the transmitted data. A simple
choice is to set X1,1 = 1. This knowledge allows us to find
α to eliminate the scaling ambiguity through normalization.
On the other hand, for KRSTC, computing ∆x implies the
knowledge of one column of X ∈ CL×T in order to eliminate
the scaling ambiguities. In this case, the UT can send a pilot
embedded in the first symbol period of each data stream. A
straightforward option is to consider X·,1 = [1, · · · , 1]T. For
both coding schemes, the scaling ambiguities affecting the
estimated channel and symbol matrices at the BS are given
by X̂ = βX and Ĥ = (1/β)H, which can also be eliminated
using the same procedure discussed for the HRIS side.

As far as computational complexity is concerned, let us
first recall the complexity of the matrix inverse. We consider
a complexity of O(I2J) to calculate the pseudo-inverse of
a tall matrix A ∈ CI×J , where rank{A} = I . For the
iterative BALS algorithms, the complexity of each iteration is
dominated by the two matrix inverses in (17) and (20) (for the
HRIS-BALS receiver) and in (32) and (33) (for the BS-BALS
receiver). The overall complexity is given by multiplying the
complexity of a single iteration by the number of iterations to
convergence. Moreover, note that the complexity of computing
the truncated-SVD(A) is assumed to be O(IJrank{A}). In
the particular case of the KronF algorithms, the complexity
is given by that of the LS estimation step in the first stage,
given by (24) for the HRIS-KronF receiver and by (37) for
the BS-KronF receiver, followed by the complexity associated
with computing a rank-1 matrix approximation steps associ-

ated with the Kronecker factorization problems in (25) and
(38), respectively. Finally, the KRF algorithm (considered at
the HRIS under the KRSTC scheme) involves solving (26)
followed by L rank-1 matrix approximation routines. Table I
lists the complexity of all receivers discussed in this work, with
the complexity of all BALS receivers provided per iteration.

VII. SIMULATION RESULTS

We adopt a distance-dependent path loss (PL) model, given
by PL = PL0(d/d0)

−α, in which PL0 = −20 dB is the path
loss at the reference distance d0 = 1m, d is the individual
link distance, and α denotes the path loss exponent. We
consider du = 30 m, dh = 70 m, and following [19], we
set αg = 2.1 and αh = 2.2 as, respectively, the UT-HRIS
and HRIS-BS link distances and path loss exponents. We
assume the Rayleigh fading channel model, in which the UT-
HRIS and HRIS-BS channels are taken from a zero-mean
independent and identically distributed (i.i.d.) complex-valued
Gaussian distribution with variances γ and β, respectively,
corresponding to the path losses of these links. We generated
the noise level according to the transmit SNR (t-SNR) values.
To keep analyses simple, we choose the transmit power to
be unity, and both HRIS and BS have the same noise power
level. Given that the energy coupling level is dictated through
meta-atom design, as highlighted in [1], we allocate the
same coupling level to all meta-atoms, and we assume the
ρ parameter is non-reconfigurable to simplify the assessment.
We design the reflecting and sensing phase shifts as well as the
coding (for both TSTC and KRSTC) according to Appendix
A. The symbol matrix X is based on a 64-QAM constellation.
We evaluate joint symbol and CE accuracies by means of
the symbol error rate (SER) and the normalized mean square
error (NMSE), respectively. Each result is an average over at
least 104 independent Monte Carlo runs. Each run considers
different realizations of the symbols, channels, and noise. To
ensure a fair comparison between the proposed TSTC and
KRSTC schemes, we set R = L and dismiss the entire
first column of X̂ ∈ CR×T to calculate the SER (not only
X̂1,1). Unless otherwise stated, we assume the parameter set
{M,N,Nc, L,R, T,K} = {8, 32, 2, 2, 2, 4, 64}.

Firstly, we examine the trade-off between the semi-blind
CE accuracy and the ρ parameter, shown in Fig. 4. To inspect
symbol estimation at both HRIS and BS, we selected the
scenario in which only Ĝ is sent via the CL, which implies
using semi-blind receivers on both sides. We chose the KronF
and BALS receivers for the HRIS and BS, respectively. When
ρ approaches 0, the HRIS becomes a quasi “only detecting
(not reflecting) RIS”, causing low SER values at the HRIS,
while at the BS, they approach 1. As ρ increases, the symbol
estimation performance is degraded at the HRIS due to the
decreased sensing/detection capability. In contrast, the esti-
mation accuracy at the BS side is enhanced as the reflected
signal arrives at the BS with greater strength. Likewise, higher
values of ρ imply an increase in the NMSE of G while
decreasing the NMSE of H, as predicted in [19]. Since the CE
capability at the HRIS is less affected by path loss in our setup
(the HRIS is closer to the UT than the BS), the estimation
accuracy for the channel G remains much higher even by
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decreasing the sensing capability (i.e., increasing ρ). However,
when ρ approaches 1, and the HRIS behaves closer to a “pure
reflecting RIS”, the improvement on the estimates of Ĥ at the
BS stops, since the accuracy of Ĝ becomes compromised. In
addition, from the left subfigure of Fig. 4, we can note that
for smaller values of ρ, the SER performance at the HRIS is
more sensitive to the chosen t-SNR value. The same happens
with the SER performance at the BS for higher values of ρ.
On the other hand, the right subfigure shows that the channel
estimation performances are less sensitive to the variation of
the t-SNR compared to the SER ones.

In the next experiments, all the results consider ρ = 90%.
Since the BS experiences higher path loss due to the cascaded
(UT-HRIS-BS) link, this choice allocates more power to the
reflected signal part. Despite the lower power allocated to the
sensed signal part, the low path loss associated with the UT-
HRIS link still ensures reliable symbol detection and CE at
the HRIS. In Fig. 5, we study the NMSE performances at the
HRIS and the BS as a function of the t-SNR. We depict the
NMSE of the individual channels G (estimated at the HRIS)
and H (estimated at the BS). On the other hand, Fig. 6 displays
the SER results associated with the symbol detection at both
HRIS and BS. In both figures, we compare the performances
of the proposed semi-blind receiver pairs using TSTC and
KRSTC. Let us first start with the performance on the HRIS
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side. As a reference for comparisons, in Fig. 5, we also plot
the performance of the pilot-assisted case based on [19] using
the same set of parameters6, wherein we apply a simple LS
solution to estimate G at the HRIS and H at the BS. As
shown in Figs. 5 and 6, all semi-blind receivers operating
at the HRIS exhibit the same NMSE and SER performances
(for both TSTC and KRSTC), with the HRIS offering higher
accuracy in symbol and CE compared to the BS due to its
positioning. Such results align with those reported in [19]
in the CE scope (see Fig. 11 therein). Moreover, the spatial
diversity introduced by analog combining at the HRIS also
contributes to improved performance. However, from Fig. 5,
estimating (additionally) the symbol matrix implies a price
to be paid (~7 dB) in terms of required t-SNR compared to
the baseline pilot-assisted method [19], which is restricted to
only estimate the channel G using the full knowledge of X.
Therefore, we can consider the pilot-assisted case as a lower
bound to the proposed semi-blind receivers in terms of CE
performance. Furthermore, the semi-blind approach allows the
UT to transmit data symbols instead of only pilot sequences
within the same time-division structure. Indeed, adding a
joint symbol and CE functionality at the HRIS can unlock
new potential for RIS-aided wireless communication systems,
which will be further discussed in Section VIII. Regarding
symbol estimation, Fig. 6 shows that all the receivers per-
formed competitively for both coding schemes, corroborating
our numerical results shown previously. These results also
highlight that when the HRIS has perfect CSI, TSTC offers
higher symbol estimation accuracy than KRSTC due to the
tensor coding gain provided by the former scheme. These
results represent a remarkable milestone in symbol estimation
utilizing the hybrid architecture proposed by [1] using only
two RF chains out of N = 32 HRIS elements.

Still considering Figs. 5 and 6, let us now focus on the
BS performance by considering all possible HRIS-BS receiver
pairs/combinations. We use the shorthand labels “B” for BALS
and “K” for KronF for presentation convenience. Specifically,

6We adapted the signal model of [19] to the single-user case. In this case,
we design X as a truncated discrete Fourier transform (DFT) matrix. Since
HRIS optimization is out of the scope of our work, and to keep the fair
comparison, we do not leverage the optimization procedure proposed in [19].
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on the HRIS side, “K” represents the KronF receiver for the
TSTC scheme and the KRF receiver for the KRSTC scheme7.
Moreover, we use the label “LS” to denote a special (reference)
BS receiver that estimates H assuming the full knowledge of
X̂ and Ĝ found at the HRIS and conveyed via the CL to the
BS. To assist us in the discussion, Fig. 7 displays the average
run time (in seconds) and the number of iterations required
for convergence of the iterative algorithms as a function of
the t-SNR for all HRIS-BS receiver pairs. Additionally, Fig.
8 shows the evolution of the computational complexity with
respect to the number of HRIS elements. Regarding HRIS-BS
CE performance (Fig. 5), all receiver pairs that utilized LS
solutions and BALS receivers at the BS performed similarly
and demonstrated improved estimation accuracy. Their NMSE
curves closely resemble the baseline, particularly KRF-LS and
BALS-LS for KRSTC. The accurate estimation obtained at
the HRIS effectively narrowed the performance gap at the
BS between pilot-based and semi-blind methods, significantly
reducing the performance disparities. Note that scenarios in
which X̂ and Ĝ are conveyed via the CL result in solutions
with lower computational complexities and less restrictive
design requirements, reaching the best results in terms of joint
symbol and CE. However, this reference method requires more
feedback associated with the conveyance of X̂ estimated at the
HRIS, especially when it has larger dimensions. It is worth
mentioning that under the same number of UT antennas, the
TSTC scheme can allocate more streams than the number L
of transmit antennas, which is an interesting setup not possible
with the KRSTC scheme. Moreover, the BALS receivers have
the distinguishing feature of refining the channel and symbol
estimates at each iteration, based only on the estimated Ĝ
reported by the HRIS. Additionally, the BALS-based receivers
can operate under more flexible system setups compared to
the closed-form ones. In contrast, their overall complexity
depends on the SNR since the number of iterations required
for convergence increases for lower SNRs, as indicated in

7For example, “B-K (TSTC)” represents the BALS-KronF receiver pair,
where BALS is used at the HRIS to the estimate the channel G while KronF
is used at the BS to estimate H using Ĝ estimated at the HRISs, obtained
via the CL, and assuming the TSTC scheme.
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Fig. 7. On the other hand, when the KronF-based closed-form
receivers are used at the BS (Fig. 5), the CE accuracy is clearly
affected, revealing a gap with respect to the iterative ones.
From Table I, note that K = 64 sub-frames are more than
enough to meet the identifiability condition of the iterative
receivers, while the KronF ones operate tightly at its minimum
identifiability boundary (K=RN for TSTC and K=LN for
KRSTC). Conversely, KronF performs only a single matrix
inverse followed by a rank-1 matrix approximation step, which
is much less complex than BALS (for both coding schemes).
Hence, its run time is quite low compared to the BALS one,
as shown in Fig. 7. It is worth mentioning that although
the computational complexity of KronF is lower than that of
BALS, it implies more restrictive system setups. In addition,
we plot the NMSE of the cascaded channel in Fig. 9, evalu-
ated at the BS by adopting the Khatri-Rao structured matrix
Θ=GT⋄H∈CLM×N . We observe that the performance of
the cascaded CE follows a similar pattern to those obtained
from the estimations of H. This emphasizes the similarity
in performance between two groups of methods regarding
the estimation at the BS: one group that employs BALS-
based iterative semi-blind receivers (to estimate H and X) or
estimates only H (semi-blind and pilot-assisted approaches),
and the other group that uses KronF-based semi-blind closed-
form receivers and shows a performance drop.

To assess symbol estimation performance at the BS, Fig. 6
depicts the results of all receiver pairs with the TALS semi-
blind receiver proposed in [50], which is the state-of-the-art
method for semi-blind CE for RIS-assisted communications. In
our case, the received signal at the BS using KRSTC differs
from that of the PRIS one of [50] only by introducing the
factor ρ, causing the HRIS to reflect an impinging wave’s
fraction instead of ρ = 1. The results show that HRIS-BS
receiver pairs executing BALS (for both TSTC and KRSTC)
at the BS perform similarly to the PRIS case using TALS.
It is essential to highlight that the HRIS absorbs 10% of
the incident signal’s energy. This is significant, as symbol
estimation remains nearly unaffected compared to the PRIS
case when employing iterative receivers. Moreover, it is worth
pointing out that the proposed receivers provide a scaling
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ambiguity-free separate CE while decentralizing the CE task,
which was previously only performed at the BS. However, one
should consider the trade-off between hardware complexity
and power consumption. Conversely, the HRIS-BS receiver
pairs that apply KronF at the BS confirm the performance
drop observed in the previous experiments shown in Fig. 5.
These results are also in line with those presented in Fig. 9 for
the cascaded CE. Additionally, Fig. 10 shows the NMSE of
the HRIS-BS channel and SER at the BS for the K-K and B-B
receiver pairs (for both TSTC and KRSTC) as well as for the
baseline methods when K = 128, i.e., beyond the minimum
K required. We can see that KronF, using the TSTC scheme,
achieves a significant performance improvement at the BS
since the K-K pair approaches the B-B ones and the baseline
methods. In contrast, such an increase of K is not sufficient
to bring improved performance at the BS when the KRSTC
scheme is used. This result emphasizes the gains of the
TSTC scheme, as previously mentioned. Note that the benefits
provided by the KronF receiver come with the transmission
of more sub-frames. This illustrates the interesting tradeoffs
offered by the proposed semi-blind HRIS-BS receiver pairs
involving performance, complexity, and operating conditions.

VIII. DISCUSSION

In the following, we discuss a few examples of application
scenarios and use cases that can potentially benefit from a
joint channel and symbol estimation at the HRIS. Relying on
direct estimation, uplink sensing was considered in [61] in a
perceptive mobile network [62] employing joint communica-
tion and sensing, which involves the detection of UTs and
environmental characteristics between them and remote radio
units (RRUs). Therein, symbols are embedded into a sensing
matrix, and compressed sensing is applied to estimate delay,
Doppler, and angular parameters. The semi-blind approach is
suitable to the mentioned joint communication and radar sens-
ing scenario since it dispenses pilot-based training and jointly
recovers symbols and channel estimates in a one-way time
protocol employing simple receiver algorithms. Furthermore,
multiple HRISs can be distributed to serve as decentralized
uplink sensing points while alleviating the processing load
at the BS. It is worth pointing out that recent works have
considered estimating channel parameters at a hybrid RIS. For
examples, please refer to [18], [20], [63], [64].

In [65], a multi-antenna UT conveys extra bits to the RIS
controller via a CL while sending data symbols to the BS
via the UT-RIS channel during the uplink transmission. Such
extra bits are used by the RIS controller to apply an over-the-
air beamforming technique to improve the transmission. This
relies on the prerequisite that there is a CL between the UTs
and the RIS. However, maintaining a CL with each active UT
can result in a scalability problem since the RIS controller
may need to support simultaneous connections with many
UTs. This is another suitable application for the proposed
semi-blind HRIS processing since control signals can be
embedded directly into the data and sent over the UT-RIS
link, eliminating or minimizing the dependency on multiple
CLs between the HRIS and the UTs. More specifically, the
transmitted signals may contain a payload containing both
data and control symbols, i.e., the symbol matrix is X can
be partitioned into X = [Xc,Xd], where Xc contains control
symbols to fulfill the mentioned purpose, while Xd contains
data symbols. This way, our semi-blind approach eliminates
the need for CLs between UTs and the RIS since X (or part of
it) can be estimated at the HRIS. Otherwise stated, leveraging
the information contained in Xc allows the HRIS to directly
decode control signals in a stand-alone fashion.

Another application that can potentially benefit from a joint
symbol and channel estimation at the HRIS is vehicular com-
munications. For instance, consider a scenario with multiple
roadside RISs placed to serve high-mobility vehicles, as shown
in [66]. In [66], assuming that the RIS-BS channel is static,
the time-varying UT-RIS channel can be estimated/predicted at
the RIS in a decentralized manner, i.e., without the assistance
of the BS, minimizing the usage of the CL and avoiding
feedback delays and outdated beamforming optimization as a
consequence of high UT’s mobility. To this, the RIS controller
sounds the transmitted pilots by the UT (vehicle) to the BS
during the uplink transmission protocol. Bringing this problem
to our proposed semi-blind approach, we foresee new use cases
allowing UTs to directly share valuable information with their
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serving HRIS (and the adjacent ones) by embedding control
data such as position, speed, and handover commands into
the symbol matrix, which can be decoded at each HRIS and
exchanged between in a decentralized way without requiring
feedback with their serving BSs. For example, such control
data can include speed/position [67], following a similar
perspective to that used in active road safety [68] applications
in vehicular networking.

Finally, we can also envisage a useful scenario where the BS
sends control data to (re)configure the HRIS autonomously.
In that case, the symbol matrix to be estimated/decoded at
the HRIS contains control commands for HRIS configuration
purposes or any other relevant network signaling information.
This scenario corresponds to an over-the-air HRIS reconfigu-
ration or standalone operation without using the control link.

IX. CONCLUSION

This paper proposed semi-blind joint channel and symbol
estimation solutions for hybrid simultaneous reflecting and
sensing RIS. Adopting a tensor modeling approach, we re-
vealed the tensor structures of the transmitted signals and
the received signals at the HRIS and BS as combinations
of PARAFAC and Tucker models, from which novel semi-
blind receiver pairs for combined HRIS-BS processing are
derived. The proposed tensor-based receivers provide data-
aided estimations of the involved channels at both the HRIS
and the BS without an a priori pilot transmission stage,
reducing the symbol decoding delay and improving the data
rate. We derived both iterative and closed-form algorithms for
joint channel and symbol estimation. We also studied identifia-
bility conditions for guaranteed channel and symbol recovery
for each semi-blind receiver pair, revealing the competitive
performances of the proposed solutions in comparison with
reference methods. Extensive simulation results showcased the
performance trends and tradeoffs for the different HRIS-BS
receiver pairs. Despite their higher computational complexity,
receiver pairs using iterative BALS at the BS offer better
estimation accuracy compared to the closed-form (KronF)
ones, regardless of the receiver chosen at the HRIS. Our dis-
cussion also illuminates the opportunities and use cases arising
from empowering HRIS with symbol detection capability. Our
numerical results also clarified the impacts of power splitting
and tensor coding schemes on channel estimation accuracy and
symbol error rates for HRIS-assisted communications. These
insights are pivotal for optimizing the system performance
in future HRIS deployments. Perspectives include extending
the proposed semi-blind receivers to multi-user scenarios and
studying alternative tensor-based estimation algorithms.

APPENDIX A
DESIGN OF CODING/PHASE-SHIFTS

We jointly design the sensing and reflecting phase shifts
by adapting a procedure proposed in [25] while design-
ing the tensor coding separately. We adopt an index vector
ζJi ≜ [(i − 1)J + 1, (i − 1)J + 2, · · · , iJ ] ∈ RJ×1 for
i = 1, · · · , I to denote the i-th block of an IJ-dimensional
column vector, in which each block has length of J . Consider
a KNc-dimensional DFT matrix Z = [z1, · · · , zKNc

]. By

sampling Z, the 3-mode fibers of TΦ and the columns of Ψ
are filled by, respectively, Φncn· = zn(ζ

K
nc
) ∈ CK×1 and

Ψ·n = z(n−1)Nc+1(ζ
K
1 ) ∈ CK×1, for nc = 1, · · · , Nc and

n = 1, · · · , N , where the constraint KNc ≥ N is assumed.
This yields respectively the following equivalent constructions
for TΦ and Ψ, defined in Section III:

[
TΦ

]
(3)

=

z1,1 · · · z(Nc−1)K+1,1 · · · z1,N · · · z(Nc−1)K+1,1

... · · ·
... · · ·

... · · ·
...

zK,1 · · · zNcK,1 · · · zK,N · · · zNcK,N

 ,

Ψ =

 z1,1 · · · z1,(N−1)Nc+1

... · · ·
...

zK,1 · · · zK,(N−1)Nc+1

 .
To design the coding tensor W (TSTC), we first construct the
matrix Υ ∈ RK×RL by truncating a K-dimensional Hadamard
matrix to its first RL columns, such that Υ = [W](3). Then,
we get W by tensorizing Υ or, simply, by doing W··k =
unvecL×R{ΥT

k·}, k = 1, · · · ,K. For the KRSTC scheme,
the coding matrix Λ is designed as a truncated Hadamard
matrix, where K ≥ L. This design can prevent the gener-
alized inverses mentioned in Section VI by replacing them
with matrix multiplications through simplified expressions. For
KRSTC, this is achieved when K ≥ LN , and for TSTC,
when K ≥ RLN . Herein, however, we prioritize choosing
the minimum number of sub-frames required to ensure joint
symbol and CE uniqueness for all semi-blind receivers.
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